AN EVALUATION OF GLOVE BAG CONTAINMENT IN ASBESTOS REMOVAL

Prepared under

NIOSH Interagency Agreement No. 88-22

EPA Interagency Agreement No. DW75931849-01-1

Bruce A. Hollett Phillip A. Froehlich Paul E. Caplan Thomas C. Cooper Stanley A. Shulman

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Centers for Disease Control National Institute for Occupational Safety and Health Division of Physical Sciences and Engineering Cincinnati, Ohio 45226

and

U.S. ENVIRONMENTAL PROTECTION AGENCY Office of Research and Development Industrial Waste and Toxics Division Manufacturing and Service Industries Branch Cincinnati, Ohio 45268

October 1990

DISCLAIMER

Mention of company names or products does not constitute endorsement by the National Institute for Occupational Safety and Health or the U.S. Environmental Protection Agency.

An EPA/NIOSH Publication

DHHS(NIOSH) Publication No. 90-119

PREFACE

Under the Occupational Safety and Health Act of 1970, the National Institute for Occupational Safety and Health (NIOSH) has been given a number of responsibilities including the identification of occupational safety and health hazards, evaluation of these hazards, and recommendation of standards to regulatory agencies to control the hazards. Located in the Department of Health and Human Services (formerly DHEW), NIOSH conducts research separate from the standard setting and enforcement functions conducted by the Occupational Safety and Health Administration (OSHA) in the Department of Labor. An important area of NIOSH research deals with methods for controlling occupational exposure to potential chemical and physical hazards. The Engineering Control Technology Branch (ECTB) of the Division of Physical Sciences and Engineering has been given the lead within NIOSH to study the engineering aspects relevant to the control of these hazards in the workplace.

In 1984, researchers from the Division of Physical Sciences and Engineering conducted a pilot study to survey the use of engineering controls in asbestos removal. A major recommendation from that study was to obtain documentation of the effectiveness of control techniques in current use. The use of glove bags was selected as the first control to be evaluated. Because the Environmental Protection Agency (EPA) also needed information as to the efficacy of glove bag removal technology, a joint study of the control of asbestos emissions from pipe lagging removal was conducted in June and July of 1985.

This report presents an evaluation of glove bag control techniques used to contain the emission of asbestos fibers during the removal of asbestoscontaining pipe lagging. The data were obtained during week-long surveys in each of four public school buildings. Reports detailing the specific conditions and operations observed at each pipe lagging removal site surveyed were prepared. [1-4] Copies of these reports may be purchased from the National Technical Information Service (NTIS), Port Royal Road, Springfield, Virginia 22161.

ABSTRACT

This report examines the effectiveness of the glove bag control method to prevent asbestos emissions during the removal of asbestos-containing pipe lagging. Glove bags have been used for asbestos removal without supplemental engineering controls or respiratory protection. This study has two objectives: (1) to evaluate the efficacy of glove bags to contain asbestos fibers, thereby protecting abatement workers from exposure to asbestos and preventing subsequent contamination of the building and environment during the removal of asbestos-containing materials; and (2) to evaluate aggressive vs. nonaggressive sampling methods for determining the efficacy of asbestos abatement.

Workplace airborne asbestos exposures were determined during asbestos removal operations in four public schools. The same work crew removed asbestoscontaining pipe lagging in all four schools. Personal exposures to airborne fibers were determined using NIOSH Method 7400 phase contrast microscopy (PCM) methods. Exposure measurements determined from personal samples indicated short-term exposures as high as 9.0 f/cc (9,000,000 f/m³) and time-weighted average exposures of 0.3 f/cc (300,000 f/m³) occurred during asbestos removal operations.

In conjunction with the U.S. Environmental Protection Agency (EPA), additional evaluations were made to measure residual work site contamination resulting from incomplete glove bag containment. Airborne asbestos contamination was determined in the work area before and after removal. Aggressive and nonaggressive sampling techniques were used for collecting area samples both before removal, and after removal and subsequent cleaning. Sample analysis was performed using both PCM and transmission electron microscopy (TEM) methods. Samples taken during nonaggressive sampling procedures and analyzed by PCM typically indicated concentrations below 0.01 f/cc (10,000 f/m³), both for pre- and post-removal. TEM analysis of side-by-side samples detected much higher asbestos concentrations than PCM for both pre- and post-removal because PCM does not detect fibers less than about 0.25 μ m in diameter.

Higher fiber concentrations were also observed when TEM analysis was compared with PCM analysis for both nonaggressive and aggressive sampling. In addition, samples collected by aggressive sampling demonstrated a greater magnitude of asbestos contamination following asbestos removal with glove bags compared to the pre-removal samples. The choice of sampling method (aggressive or nonaggressive) and of analytical method (PCM or TEM) could thus have an effect on the perceived level of asbestos contamination. It could lead to different conclusions regarding the presence or absence of low level asbestos contamination. Exposure concentrations found at these four schools indicate that glove bags, as used during this study, did not completely contain the asbestos being removed. In three of the four facilities studied, workers were exposed to airborne asbestos concentrations above the OSHA PEL. The asbestos concentrations observed in the last of the surveys indicated that glove bags may provide some degree of containment under certain conditions. Although worker training and experience are important components of a reliable system of control measures, the present study does not provide a basis to specify conditions under which adequate containment can be assured. It is prudent to assume that the use of glove bags results in unpredictable exposure levels that may present an exposure hazard to workers and contamination of the work site.

CONTENTS

Disclaimer	.ii
Preface	iii
Abstract	.iv
Acknowledgments	.ix
Glossary	x
Acronymsx	iii
1. Introduction	1
1 1 Rackground	· · •
1.1.1 Technical	2
1 1 2 Environmental Regulation	 २
1 1 3 Applytical	
1 1 3 1 Phase Contract Microscony	
1 1 3 2 Floatron Wieroscony	۰.۰ ۹ ج
1.1.4 Facilitian Surround	
1.1.4. Facilities Surveyeu	
2. Discussion of the Hazard and Exposure Criteria	6
2.1. Occupational Exposure Criteria	6
2.2. Environmental Exposure Criteria	
	•••
3. Site and Process Description	.16
3.1. Site Description.	16
3.2. Process Description	.16
3.2.1. Generic Overview of an Asbestos Removal Activity	.19
3.2.1.1. Preparation	.19
3.2.1.2. Removal	.19
3.2.1.3. Decontamination	.20
3.2.2. Asbestos Removal Practices Observed in this Study	.20
3.2.2.1. Preparation	.20
3.2.2.2. Removal	.20
3.2.2.3. Decontamination	.22
4. Methodology	.25
4.1. Air Sampling Strategy	.25
4.1.1. Overview	.25
4.1.2. Personal Air Samples	.25
4.1.3. Area Air Samples	.25
4.1.4. Direct-Reading Monitors	.27
4.1.5. Pre- and Post-Removal Air Sampling	.27
4.2. Evaluation Methods	.27
4.2.1. Personal Sampling	.27
4.2.2. Workplace Area Sampling	.27
4.2.3. Pre- and Post-Removal Air Sampling	.28
4.2.4. Real-Time Fiber Monitoring	.28
THE THE LEVEL MULTURELLES	

CONTENTS - Continued

4.3. Analysis	28
4.3.1. Phase Contrast Microscopy	28
4.3.1.1. Manual	28
4.3.1.2. Magiscan II	29
4.3.2. Transmission Electron Microscopy	29
5. Results and Discussion	30
5.1. Field Blanks and Lower Limits of Detection	30
5.1.1. Phase Contrast Microscopy	30
5.1.2. Transmission Electron Microscopy	30
5.2. Confidence Limits	30
5.2.1. Phase Contrast Microscopy	30
5.2.2. Transmission Electron Microscopy	31
5.3. Sampling Results	33
5.3.1. Work Activity Samples	33
5.3.1.1. Personal Samples	33
5.3.1.2. Area Samples	40
5.3.1.3. Discussion of Work Activity Exposure Results	40
5.3.2. Environmental Sampling	42
5.4. Other Observations	48
5.4.1. Magiscan II	48
5.4.2. Engineering Controls	51
5.4.3. Work Practices	51
5.4.4. Contractor and School Board Monitoring	51
5.4.5. Personal Protection	52
5.4.6. Safety Considerations	52
6. Conclusions and Recommendations	53
6.1. Efficacy of Glove Bag Containment	53
6.2. Clearance Methodology	54
6.3. Monitoring and Recommended Work Practices for Glove Bag Use	55
6.4. Research Needs	58
7. References	59

FIGURES

2-1.	Comparison by Laboratory of Asbestos Structure Counts on Blanks	12
2-2.	Probability of Passing Z-Test (0.005 f/cc Ambient)	12
2-3.	Probability of Passing Z-Test (0.02 f/cc Ambient)	15
3-1.	Preparation for Removal of Asbestos-Containing Pipe Lagging	21
3-2.	Working in a Glove Bag	23
3-3.	Moving a Glove Bag	24
4-1.	Area Sampling Equipment	26
5-1.	TWA Personal Samples During Asbestos Abatement	35
5-2.	Personal Exposure During Preparation and Removal of	
	Asbestos-Containing Pipe Lagging	36
5-3.	Average Asbestos Structures by TEM Analysis	46
5-4.	Comparison of Total Fibers by PCM and TEM Analysis	47
5-5.	Cumulative Size Distribution of Asbestos Fibers	50

TABLES

3-1.	Asbestos Pipe Lagging Removal Study17
3-2.	Description and Linear Feet of Pipe Cleaned During Survey
5-1.	90% Confidence Limits for a Single PCM Analysis by NIOSH Method 7400-B32
5-2.	Daily TWA Samples During Asbestos Abatement
5-3.	Average TWA Personal Samples During Asbestos Abatement
5-4.	Summary of Sampling Results During Preparation for Pipe Lagging Removal. 38
5-5.	Summary of Sampling Results During Pipe Lagging Removal
5-6.	TWA Concentrations Calculated from TEM and PCM Analyses
5-7.	Average Asbestos Contamination in Rooms and Facilities (PCM Analysis)43
5-8.	Average Asbestos Contamination in Rooms and Facilities (TEM Analysis)4
5-9.	Average Per Cent Asbestos in Structures and Fibers

APPENDIXES

Appendix A - Summary Tables from Reports of Individual Facilities Appendix B - Tabulation of Data Obtained Using PCM and Magiscan II Appendix C - Tabulation of Data Obtained Using TEM Appendix D - Statistical Analysis

ACKNOWLEDGMENTS

The authors would like to acknowledge the assistance and support of many persons in both the public and private sector. We express our gratitude to the following organizations and individuals for administrative, technical, consultative, analytical, and field support.

From NIOSH: Dr. James A. Gideon and Mr. James H. Jones for project planning and administrative support; Mr. Frank W. Godbey and Mr. John Frede for support of field survey activities; Dr. Paul A. Baron, Mr. Thomas J. Fischbach, and Mr. William T. Stringer for technical and statistical support; Ms. Debra Lipps for stenographic support; Ms. Karen Lenihan and Ms. Jo Anna Bennett for data entry; Mr. Philip J. Bierbaum, Dr. Hugh Hansen, Dr. Nelson Leidel, and Mr. Ralph D. Zumwalde for manuscript review; Mr. Frank W. Godbey for safety and health review; Mr. James W. Carter III, Dr. Charles L. Geraci, and Dr. Donald D. Dollberg for laboratory coordination; and DataChem, formerly UBTL Inc., for PCM analytical support. We are especially grateful for the extensive effort Mr. Zumwalde and Dr. Gideon also contributed in editorial assistance.

From USEPA, The Manufacturing and Service Industries Branch of the Industrial Wastes and Toxics Technology Division in the Office of Research and Development: Mr. Roger Wilmoth, Mr. William Cain, and Mr. Tom Powers for interagency agreement support and technical support; Mr. Chris Frebus and Mr. George Csordas for TEM data processing and statistics; and Mr. Pat Clark for analytical support.

From PEI, Inc. through an EPA contract: Mr. Bob Amick and Mark Karaffa for technical and field support; Mr. Ronald Sollberger and Mr. Vincent Passaro for field support; and Ms. Eugenia Strom and Mr. Frank Welborn for analytical support.

From the Cincinnati School System: Mr. Harold T. Flaherty for exceptional cooperation and enthusiastic support.

We also wish to recognize Dr. Joseph H. Guth, Interscience Research Inc., and Mr. William Ewing, The Environmental Management Group, Inc., formerly with Georgia Institute of Technology, for technical review.

GLOSSARY

NOTE: This study was conducted using both NIOSH and EPA analytical methods. In general, NIOSH methods were used for occupational exposures. Both NIOSH and EPA methods were used to determine asbestos abatement evaluations. For PCM samples analyzed by Method 7400, ^[17] the total count is reported as fibers. For TEM samples analyzed by the revised Yamate Method, ^[19] separate counts are made for fibers, bundles, clusters, and matrixes and the sum of these categories is reported as structures. The original NIOSH Method 7402^[20], in place at the time of this study, also followed this method of reporting. (In May 1989, a revision of Method 7402^[21] was issued, wherein only particles fitting the definition of Method 7400 are counted and are reported as fibers.) The terminology used in the present study is fibers for PCM results and structures for TEM results.

- Abatement Removal or otherwise treating ACM to prevent contamination of buildings with asbestos.
- AggressiveA sampling method using blowers and/or fans to keepsamplingparticulates suspended during the sampling period.
- Amended water Water containing wetting agents, penetrants, and/or other agents to enhance the wetting of ACM and thereby reduce the generation of dust.
- Asbestos A group of impure magnesium silicate minerals which occur in fibrous form. These heat and chemical resistant materials with high tensile strength have been fabricated into a multitude of forms to utilize these characteristics. The more common mineral forms are known as: actinolite, amosite, anthophyllite, chrysotile, crocidolite, and tremolite.
- Aspect ratio The ratio of the length to the width of a particle or fiber.

Bundle EPA:^[11] A structure composed of three or more fibers in a parallel arrangement with each fiber closer than one fiber diameter.
 NIOSH:^[20] A compact arrangement of parallel fibers in which separate fibers or fibrils may only be visible at the ends of the bundle. Asbestos bundles having aspect ratios of 3:1 or greater and less than 3 μm in diameter are counted as fibers.

Glossary (Continued)

- Cluster EPA:^[11] A structure with fibers in a random arrangement such that all fibers are intermixed and no single fiber is isolated from the group. Groupings must have more than two intersections. NIOSH:^[20] A network of randomly-oriented interlocking fibers arranged so that no fiber is isolated from the group. Dimensions of clusters can only be roughly estimated and clusters are defined arbitrarily to consist of more than four individual fibers.
- Field Blank A clean filter cassette assembly which is taken to the sampling site, handled in every way as the air samples, except that no air is drawn through it.
- Fiber EPA:^[11] A structure having a minimum length equal to 0.5 μm and an aspect ratio (length to width) of 5:1 or greater with substantially parallel sides.
 NIOSH:^[14] "A Rules" Count only fibers longer than 5 μm. Measure the length of curved fibers along the curve. Count only fibers with a length-to-width ratio equal to or greater than 3:1. "B Rules" Each fiber must be longer than 5 μm and less than 3 μm in diameter . . . with a length-to-width ratio equal or greater than 5:1.
- f/cc Fibers per cubic centimeter.
- f/m³ Fibers per cubic meter.

FilterThe concentration of structures per square millimeter ofbackgroundfilter that is considered indistinguishable from thelevelconcentration measured on a blank (filters through which no airhas been drawn).

- Grid An open lattice for mounting on the sample to aid in its examination by TEM. The term is used by the EPA to denote a 200-mesh copper lattice approximately 3 mm in diameter.
- Intersection Nonparallel touching or crossing of fibers, with the projection having an aspect ratio of 5:1 or greater.

Lpm Liters per minute.

- Matrix EPA:^[11] Fiber or fibers with one end free and the other end imbedded in or hidden by a particulate. The exposed fiber must meet the fiber definition. NIOSH:^[20] One or more fibers attached to or imbedded in a nonasbestos particle.
- Nonaggressive An environmental sampling method performed in a quiescent sampling atmosphere.

Glossary (Continued)

Operations & Maintenance Program (O&M P)	A program of training, work practices, and periodic surveillance to maintain friable ACBM in good condition, ensure cleanup of asbestos fibers previously released, and prevent further release by minimizing and controlling friable ACBM disturbance or damage.
Pipe lagging	ACM used to insulate pipes carrying heated or refrigerated liquids or vapors.
Poly	Polyethylene sheeting.
Structure	A microscopic bundle, cluster, fiber, or matrix which may contain asbestos. ^[11]
s/cc ³	Structures per cubic centimeter.
s/1001 ²	Structures per square millimeter.

ACRONYMS

- ACBM Asbestos-containing building material.
- ACM Asbestos-containing material.
- AHERA Asbestos Hazard Emergency Response Act.
- CV Coefficient of variation.
- EDXA Energy dispersive X-ray analysis.
- EPA The Environmental Protection Agency.
- FAM Fibrous aerosol monitor.
- HEPA High efficiency particulate air -- a designation for a type of filter capable of filtering out particles of 0.3 μ m or greater from a body of air at 99.97 percent efficiency or greater.
- LOD Limit of detection.
- LOQ Limit of quantification.
- MSHA The Mine Safety and Health Administration.
- NIOSH The National Institute for Occupational Safety and Health.
- OSHA The Occupational Safety and Health Administration.
- PBZ Personal breathing zone. Breathing zone samples are commonly collected by a device secured to the lapel of a worker's uniform.
- PCM Phase contrast microscopy.
- PEL Permissible exposure limit, an OSHA standard designating the maximum occupational exposure permitted, as an 8-hour TWA.
- REL Recommended exposure limit, the NIOSH recommendation for maximum occupational exposure.
- RSD Relative standard deviation.
- SAED Selected area electron diffraction.
- SEM Scanning electron microscope or microscopy.
- STD Standard deviation.
- STEM Scanning transmission electron microscope.
- TEM Transmission electron microscope or microscopy.
- TWA Time-weighted average.

1. INTRODUCTION

Under the Occupational Safety and Health Act of 1970, the National Institute for Occupational Safety and Health (NIOSH) was assigned responsibilities for conducting research in occupational safety and health, for disseminating information emerging from those studies, for recommending standards to regulatory agencies, and for supporting the training of professionals in occupational safety and health. It was placed in the Department of Health and Human Services (formerly, the Department of Health, Education, and Welfare) to conduct research and education programs separate from the standard setting and enforcement functions conducted by the Occupational Safety and Health Administration (OSHA) in the Department of Labor.

An important area of NIOSH research deals with methods for controlling occupational exposure to potential biological, chemical, and physical hazards. The Engineering Control Technology Branch (ECTB) of the Division of Physical Sciences and Engineering has been given the lead within NIOSH to study the engineering aspects relevant to the control of these hazards in the workplace. Since 1976, the ECTB has conducted assessments of control technology methods used in industry on the basis of controls used within a selected industry, controls used for common industrial processes, or specific control techniques. The objective of these studies has been to document and evaluate effective control techniques (e.g., isolation or the use of local ventilation) that reduce the risk of potential health hazards, and to create an awareness of the need for or the availability of effective hazard control measures. A number of these studies on control assessments, including the present research study on the use of glove bags in asbestos removal, have been performed in collaboration with the Environmental Protection Agency (EPA).

The original objective for this study was concerned primarily with control of occupational exposure; however, in collaboration with the EPA, environmental aspects were also included. Because the EPA was preparing legislation for asbestos abatement, that Agency was interested not only in the efficacy of glove bags for asbestos containment, but also in the development of test methods to evaluate asbestos contamination at very low concentrations. As a result, the study was undertaken with two objectives:

• To evaluate the efficacy of the use of glove bags as a control technique to prevent occupational exposure to airborne asbestos during the removal of asbestos-containing pipe lagging, and as a control technique to prevent contamination of the building environment. NOTE: The occupational exposure and building contamination aspects are discussed separately in the present report because they involve different analytical methods and regulatory agencies.

• To evaluate sampling and analytical techniques for determining concentrations of airborne asbestos for asbestos abatement clearance, specifically: (a) to compare airborne asbestos concentrations determined by "aggressive" and "nonaggressive" sampling methods, and (b) to compare analytical results determined by PCM and TEM procedures.

The evaluations were conducted during the removal of asbestos-containing pipe lagging in four public school buildings; all removal operations were conducted by the same work crew. The authors have attempted to accurately describe the operations and conditions observed during the surveys and to delineate the major difficulties encountered in the evaluations of the sampling and analytical methodologies. In many cases, the high variability of asbestos analytical results precluded the ability to obtain sufficient data to determine statistical differences; however, the data and observations reported indicate trends and other information useful to members of the asbestos removal industry for reducing asbestos emissions.

1.1. BACKGROUND

1.1.1. Technical

A pilot study of asbestos abatement operations conducted in 1984 revealed novel approaches that have been and are being developed to control asbestos fiber exposure of workers engaged in the removal of asbestos-containing materials (ACM).^[5] Two principle methods currently used to control airborne exposure are wetting the ACM and the use of negative air pressure in the workplace. Wetting methods utilize fluids to saturate ACM before and during the removal of these materials to reduce the potential for asbestos fibers to become airborne. Exposure control by negative pressure is accomplished by the use of fans or exhaust devices to remove contaminated air from enclosed or controlled areas and to draw clean air into these areas. In order to contain and reduce airborne asbestos, this exhausted air is filtered through high efficiency particulate air (HEPA) filters before being released to the atmosphere.

The evaluation of source controls, such as containment or local ventilation applied at the source of the emission, is of particular interest because these are generally the most effective in controlling both occupational exposure and environmental releases. An asbestos abatement activity that is frequently performed is the removal of pipe lagging (i.e., ACM used to insulate pipes carrying heated or refrigerated liquids or vapors). Glove bags are often used as source controls during the removal of pipe lagging. These are large plastic bags which contain long gloves sealed into the body. The worker seals the bag around the material to be removed and then manipulates various tools within the bag by means of the gloves sealed into the side of the bag to remove the lagging. The debris falls to the bottom of the bag, where it is contained for final disposal as asbestos waste in accordance with regulations promulgated by the EPA and by State and local governments. Glove bags may also be used for general plant maintenance. They are often used without other means of containment, such as total enclosure of the removal area with plastic barriers and/or the use of negative pressure. The effectiveness of glove bags to control asbestos emissions is extremely important to assure the health of

workers and to prevent contamination of the adjoining workplaces and the environment.

This study was initiated to determine if the use of glove bags can reliably control asbestos emissions during abatement operations. In addition, EPA methodologies for measuring room contamination levels of airborne asbestos for post-abatement clearance were evaluated.

1.1.2. Environmental Regulation

The EPA has been involved in regulatory activities to reduce asbestos emissions and contamination of the environment since 1972.^[6,7] A major concern of this Agency is that degradation or disturbance of in-place ACM in buildings may cause asbestos to contaminate the buildings. The debris may become airborne from repeated episodes of agitation and thereby create a potential for exposure to the occupants. Although the application of asbestos fireproofing material is not permitted in buildings today, the eventual management and removal of in-place ACM poses a technical and economic dilemma. A part of the Toxic Substances and Control Act, the Asbestos-in-Schools Rule,^[8] requires administrators of primary and secondary schools, both private and public, to have all buildings inspected for ACM; to document its presence and condition; and to inform their employees, the PTA or parents, and the State authority.

In the past, rather than promulgate specific regulations for asbestos abatement activities, the EPA has issued "Guidance Documents"^[9,10] which have presented the "best engineering judgment" approach at that time. Based on these guidelines and on the present requirements of the Asbestos Hazard Emergency Response Act (AHERA),^[11] ACM must be routinely monitored through an established operation and maintenance program. If abatement is needed, the accepted methods are: (1) encapsulation with a penetrating or bridging chemical; (2) enclosure to prevent access to public or to airflow disturbances; or (3) removal. EPA regulations also require the removal of ACM prior to demolition of a building,^[12] so eventual removal of ACM is virtually inevitable.

Because the efficacy of certain control methods for asbestos removal is not well known, EPA and NIOSH initiated an Interagency Agreement to add to the planned evaluations of glove bag containment by NIOSH researchers. The added work involved documenting the effectiveness of glove bags in controlling airborne emissions that could potentially add to long term, low level building contamination. This required the determination of the airborne asbestos concentrations in work areas before asbestos removal was started and also after the activities were completed in order to determine whether there was a release of airborne asbestos during the removal. Two sampling methods, "aggressive" and "nonaggressive", were used to compare the effectiveness of these methods in evaluating asbestos contamination for building clearance assessment. They are described in detail in the Section 4.1.5, Pre- and Post-Removal Air Sampling.

1.1.3. Analytical Methods

At the time of the study, phase contrast microscopy (PCN) was the primary method used to determine airborne asbestos concentrations in the workplace.

Several investigators had developed transmission electron microscopy (TEM) methods with the capability of detecting fibers smaller than those visible by PCM. Another part of the Interagency Agreement was to provide some evaluation of these methods for detecting airborne asbestos at the very low concentrations encountered in environmental evaluations by using side-by-side sampling and subsequent analysis by both PCM and TEM.

1.1.3.1. Phase Contrast Microscopy--

PCM has historically been used for the purpose of analyzing occupational exposures to airborne asbestos. It was developed for determining occupational exposure in industrial environments where airborne fibers were known to consist essentially of asbestos. Epidemiologic studies have correlated health effects to PCM fiber counts. However, PCM does not differentiate between asbestos and other fibrous matter such as organic textile or cellulose fibers, nor does it detect very thin or small fibers. The Occupational Safety and Health Administration (OSHA) permissible exposure limit (PEL) is based on a method that utilizes PCM to manually count the number of fibers greater than 5 micrometers (μ m) in length and with an aspect ratio of at least 3:1 (length to width) collected on cellulose ester filter media.^[13]

NIOSH Method 7400 describes sampling and analytical procedures for determining fiber concentrations by PCM. This method was first issued February 15, 1984.^[14] It was revised May 15, 1985,^[15] and a second revision was made August 15, 1987;^[16] the third and current revision was issued May 15, 1989.^[17] The NIOSH Method 7400, in place at the time of the study,^[14] included two sets of counting rules: "A" rules and "B" rules. PCM samples from this study were analyzed using the "B" rules, which define a fiber as having an aspect ratio of 5:1 or greater. A note under the "B" rules in this version states: "... The B rules are preferred analytically because of their demonstrated ability to improve the reproducibility of fiber counts." In the third and current revision of Method 7400,^[17] the "B" rules are only included as Appendix C and an introductory note concludes: "NIOSH recommends the use of the 3:1 aspect ratio in counting fibers." (As discussed in Section 2.1, Occupational Exposure Criteria, it is not possible to estimate accurately "A" rule fiber counts based on "B" rule results.)

A note on the applicability of NIOSH Method 7400^[17] states: ". . . The method gives an index of airborne fibers . . . Fiber [less than about] 0.25 µm diameter will not be detected by this method." The method requires a microscopist to count the number of fibers collected on several very small areas of the filter used to capture these fibers. Unfortunately, the deposition of the fibers on the filter is not uniform. Baron and Deye^[18] note that ". . . The change in particle trajectories caused by [electrostatic] charge effects can result in nonuniform deposits on the collecting filter surface and net loss of sample " Therefore, in spite of attempts to randomize counting areas, the specific fields counted may not be representative of the entire filter. For this and other reasons as discussed in Section 5.2, Confidence Limits, the interlaboratory coefficient of variation (CV = 0.45) is quite large. The term "index" is properly applied to the result of microscopic fiber counts, because quantitation of analytical results contains more uncertainty than does the analysis of most chemicals. However, this method does have the capability of producing results rapidly (less than 24 hours) and relatively inexpensively.

1.1.3.2. Electron Microscopy--

In addition to PCM, transmission electron microscopy (TEM) was evaluated for asbestos counting both because of the greatly enhanced resolution and contrast, and of the analytical capability to differentiate between asbestos and nonasbestos structures. The greater power of the TEM method becomes important where the airborne fibers with diameters less than 0.25 μ m (the limit of the resolving power of PCM) are present. For example, in relatively clean buildings and in the surrounding ambient environment, there is a proportionately lower concentration of airborne fibers greater than 0.25 μ m in diameter may be present in these circumstances, they will not be observed at all with PCM. Thus, under these conditions, no conclusion can be made about their presence or absence. Because of the lower resolving power of the PCM method, the EPA requires the TEM method to be used for quantitating asbestos fibers. [11,19]

Widespread use of TEM has been limited by the relative high cost of analysis, the availability of equipment and trained personnel, and the absence of a standardized method of analysis. NIOSH Method 7402,^[20] in place at the time of this study, used the same cellulose ester filter medium as does the PCM method. (Method 7402 was revised on May 15, 1989,^[21] but the use of a cellulose ester filter is still required.) The EPA has developed a provisional method for TEM analysis of asbestos which requires a polycarbonate filter medium.^[19] This method was further modified for regulatory purposes when the Asbestos Hazard Emergency Response Act (AHERA)^[11] was promulgated in 1986, and is considerably different than the NIOSH method 7402 and the requirements of the OSHA Standard;^[13] this is discussed further in Section 2.2, Environmental Exposure Criteria.

1.1.4. Facilities Surveyed

In the summer of 1983, a public school board employed a consultant to survey the school buildings to determine the type, location, and condition of ACM. Asbestos-containing pipe and/or boiler lagging was found in 90% of the buildings surveyed; asbestos-containing acoustical plaster, fireproofing, and/or acoustical ceiling tile were found in only a few buildings.^[22] I In addition, there were numerous occurrences of miscellaneous building materials (pressed asbestos-board, asbestos-cement sheeting, etc.) and other products (asbestos protective clothing, pot holders, gaskets, etc.) observed in these buildings. The consultant's recommendations for minimizing the risk of asbestos exposure included the removal of significantly deteriorated acoustical plaster and fireproofing, the repair and repainting of acoustical plaster in some areas, and the repair or removal of damaged and/or exposed asbestos pipe and boiler insulation. The establishment of an asbestos hazard management program was recommended to provide for employee training, monitoring, and management of all ACM that remained in these buildings. These recommendations were implemented by the school board and the priority asbestos removal and repair projects were completed. In 1985, a contractor was employed to remove all remaining asbestos-containing pipe lagging and materials. Arrangements were made with the school board for the NIOSH research team to conduct surveys at four school buildings and to collect samples to determine airborne asbestos contamination levels before, during, and after the removal of pipe lagging.

2. DISCUSSION OF THE HAZARD AND EXPOSURE CRITERIA

2.1. OCCUPATIONAL EXPOSURE CRITERIA

Because of the potential carcinogenicity of asbestos NIOSH recommends that exposure of workers to asbestos be reduced to the lowest feasible limit. In 1984, NIOSH reaffirmed its previously recommended exposure limit (REL) not to exceed 100,000 fibers greater than 5 μ m in length per cubic meter (f/m³) or 0.1 fibers per cubic centimeter (f/cc) based on the limit of quantification for analysis of samples by PCM.^[23] On May 9, 1990, at the hearing on OSHA's Notice of Proposed Rulemaking on Occupational Exposure to Asbestos, Tremolite, Anthrophyllite, and Actinolite,^[24] this position was summarized as follows:

- *. . . On June 21, 1984, NIOSH testified at the OSHA public hearings on occupational exposure to asbestos and presented supporting evidence that there is no safe airborne fiber concentration for any of the asbestos minerals.^[23] NIOSH stated that not even the lowest fiber exposure limit could assure all workers of absolute protection from exposure-related cancer. This conclusion was consistent with previous positions taken by NIOSH in the 1976 criteria document on asbestos^[25] and the joint NIOSH/OSHA report of 1980.^[26] In the NIOSH/OSHA report, NIOSH also reaffirmed its position that there is no scientific basis for differentiating health risks between types of asbestos fibers for regulatory purposes. In its 1984 testimony, NIOSH urged that the goal be to eliminate asbestos fiber exposures.^[23] Where exposures cannot be eliminated, exposures should be limited to the lowest concentration possible.
- "When recommending an occupational exposure limit in its 1984 testimony, NIOSH acknowledged the limitations imposed by currently accepted methods of sampling and analysis. NIOSH concluded that for regulatory purposes, phase contrast microscopy (PCM) was still the most practical technique for assessing asbestos fiber exposures when using the criteria given in NIOSH Analytical Method 7400.^[17] NIOSH also recognized that phase contrast microscopy (1) lacked specificity when asbestos and other fibers occurred in the same environment, and (2) was not capable of detecting fibers with diameters less than approximately 0.25 micrometers. NIOSH further stated that it might be necessary to analyze samples by electron microscopy where both electron diffraction and microchemical analysis can be used to help identify the type of mineral and assist in ascertaining asbestos fiber concentrations."

In the 1990 testimony, NIOSH recommends the following to be adopted for regulating exposures to asbestos:

"The current NIOSH asbestos recommended exposure limit is 100,000 fibers greater than 5 micrometers in length per cubic meter of air, as determined in a sample collected over any 100-minute period at a flow rate of 4L/min. This airborne fiber count can be determined using NIOSH Method 7400, or equivalent. In those cases when mixed fiber types occur in the same environment, then Method 7400 can be supplemented with electron microscopy, using electron diffraction and microchemical analysis to improve specificity of the fiber determination. NIOSH Method 7402^[21] provides a qualitative technique for assisting in the asbestos fiber determinations. Using these microscopic methods, or equivalent, airborne asbestos fibers are defined, by reference, as those particles having (1) an aspect ratio of 3 to 1 or greater; and (2) the mineralogic characteristics (that is, the crystal structure and elemental composition) of the asbestos minerals and their nonasbestiform analogs

NIOSH also includes the following statement on asbestos in pertinent Health Hazard Evaluations:

- "NIOSH recommends as a goal the elimination of asbestos exposure in the workplace; where it cannot be eliminated, the occupational exposure to asbestos should be limited to the lowest possible concentration.^[23] This recommendation is based on the proven carcinogenicity of asbestos in humans and on the absence of a known safe threshold concentration.
- "NIOSH contends that there is no safe concentration for asbestos exposure. Virtually all studies of workers exposed to asbestos have demonstrated an excess of asbestos-related disease. NIOSH investigators therefore believe that any detectable concentration of asbestos in the workplace warrants further evaluation and, if necessary, the implementation of measures to reduce exposures.
- "NIOSH investigators use phase contrast microscopy (NIOSH Method $7400^{[17]}$) to determine airborne asbestos exposures, and electron microscopy (NIOSH Method $7402^{[21]}$) to confirm them. The limits of detection and quantitation depend on sample volume and quantity of interfering dust. The limit of detection is 0.01 fiber/cc $[10,000 \text{ fibers/m}^3]$ in a 1,000-liter air sample for atmospheres free of interferences. The quantitative working range is 0.04 to 0.5 fiber/cc $[40,000 \text{ to } 500,000 \text{ fibers/m}^3]$ in a 1,000-liter air sample.
- "The Occupational Safety and Health Administration (OSHA) permissible exposure limit (PEL) for asbestos limits exposure to 0.2 fiber/cc [200,000 f/m³] as an 8-hour TWA.^[13] OSHA has also established an asbestos excursion limit for the construction industry that restricts worker exposures to 1.0 fiber/cc [1,000,000 f/m³] averaged over a 30-minute exposure period.^[27]"

At the time of this study (1985), the OSHA PEL was 2.0 fibers greater than 5 μ m in length per cubic centimeter (2,000,000 f/m³), averaged over an 8-hour work day, with a celling concentration of 10.0 f/cc (10,000,000 f/m³), not to be exceeded over a 15-minute period.^[27] There was also a provision for medical monitoring of workers routinely exposed to fiber concentrations in excess of 0.1 f/cc (100,000 f/m³).

On June 20, 1986, OSHA issued a revised standard which reduced the PEL to 0.2 f/cc (200,000 f/m³) greater than 5 µm in length, as an 8-hour time-weighted average (TWA) exposure.^[13] It also set an action level of 0.1 f/cc (100,000 f/m³) that triggers other requirements, including worker training and medical monitoring; in 1988 the standard was revised to establish a 1.0 f/cc (1,000,000 f/m³) excursion limit.^[27]

Many employees of local, state, or federal governmental agencies are exempt from OSHA regulations. To protect all workers in public schools where asbestos removal is performed, the EPA first adopted the provisions of the OSHA standard in effect in 1985 and then the June 1986 OSHA revisions in February 1987.^[29]

As stated, the determination of occupational exposure to asbestos according to the criteria contained in the NIOSH REL and the OSHA PEL are based on the use of the PCM analytical method. This method has inherent limitations based on the optics of the microscope and upon the ability of the microscopist to reliably discriminate fiber length to width ratios in a complex sample matrix. NIOSH Method 7400^[14] stipulated that only fibers longer than 5 μ m be counted with a length to width ratio of either 3:1 (A rules) or 5:1 (B rules). The A rules use the same aspect ratio required in the earlier NIOSH analytical method P&CAM 239^[30] and the current OSHA PEL, and thus have the advantage of relating fiber concentrations to current and historical exposure data. There is no means to generically extrapolate fiber concentrations determined from the use of the B rules to that which may have been derived if the A rules had been used, because the distribution of fibers may vary from case to case. However, fiber counts of samples collected in this study at two schools were compared using TEM analysis to determine fiber dimensions and type of fiber. Using the fiber size distribution determined by TEM for samples in the present study, the difference between the number of fibers counted having aspect ratios greater than 5:1 and those having aspect ratios greater than 3:1 was under 20%.

There are several other factors in addition to aspect ratio that can affect the result of asbestos counting methods. Perhaps the most important is that PCM is used for counting total fibers greater than 5 μ m in length and 0.25 μ m in diameter. On the other hand, TEM counts include only fibers verified by crystalline asbestiform identification. Furthermore, the minimum fiber diameter that can be routinely observed by PCM is approximately 0.25 μ m. Because many asbestos fibers have diameters less than 0.25 μ m, they are not usually visible during PCM analysis. Thus the use of TEM provides the opportunity to identify and characterize all airborne fibers present in the work environment. <u>Total</u> fiber counts by TEM are often far higher than counts of the same sample obtained by PCM. However, once fibers are speciated, TEM counts of asbestos fibers could actually be lower than the PCM count, especially for relatively low concentrations of mixed fiber type containing a high proportion of nonasbestos fibers. In spite of these limitations, PCM analysis is recognized by occupational health professionals as an appropriate index of exposure for approximating disease potential.

Exposures to airborne asbestos fiber concentrations are usually reported as the number of fibers per cubic centimeter (f/cc) of air. In this report, concentrations are also expressed as fibers per cubic meter (f/m^3) , because the amount of inspired air over the work shift of asbestos removal workers

would typically be 1 to 2 cubic meters of air per hour. In an environment contaminated at the OSHA PEL of 0.2 f/cc [200,000 f/m³], a worker with no respiratory protection could inhale over 2 million fibers visible by PCM during an 8-hour work shift! As noted above, because of the small size of airborne fibers, fibers observed and counted by PCM often represent only a small percentage of the total number of fibers inhaled by an unprotected worker.

2.2. ENVIRONMENTAL EXPOSURE CRITERIA

The EPA had established "clearance" guidelines for determining when reoccupancy may occur after asbestos removal. These guidelines were initially published as "recommended practices."^[9,10] In 1984 and 1985, the recommended practice was to perform visual inspection of the work area after asbestos removal, followed by quiescent air sampling using PCM for fiber analysis. Fiber concentrations were required to be below the lower quantifiable limit of detection using NIOSH Method P&CAM 239.^[30] This limit ranged from 30,000 to 10,000 f/m³ (0.03 to 0.01 f/cc) at the recommended sample volumes of 1,000 to 3,000 liters. If fiber concentrations in the building, after asbestos abatement activities, exceeded this limit, then the work areas were required to be recleaned until exposures were brought under control.

The revised EPA guidelines issued in $1985^{[9]}$ recognized NIOSH Method 7400 and recommended a 3,000 liter sample in order to provide a minimum quantification limit of 0.01 f/cc (10,000 f/m³). These guidelines also recommended using aggressive sampling and the use of TEM analysis to determine asbestos concentrations. To permit reoccupancy using this evaluation methodology, the average fiber concentration of five samples collected from a "homogenous" area was to be statistically equal to or less than the ambient background fiber concentration. A typical ambient asbestos concentration is approximately 0.005 f/cc (5,000 f/m³).

The field work for the present study was conducted in June and July of 1985, based on the 1985 revised EPA guidelines, ^[9] for sampling and analysis. For the sake of completeness, a discussion of legislative revisions of environmental exposure criteria which have occurred since 1985 that affect current asbestos removal work is given in the following text.

In October 1986, the Asbestos Hazard Emergency Response Act $(AHERA)^{[11]}$ was passed which required the EPA to regulate asbestos in schools. On October 30, 1987, the final rule "Asbestos-Containing Materials in Schools" was published in the Federal Register.^[32] This rule requires the use of aggressive air sampling to determine if a response action (an asbestos containment or removal operation and clearance procedure for reoccupancy) has been satisfactorily completed. For the first 2 years after the effective date of the rule (December 14, 1987), ". . . a local education agency (LEA) may analyze air monitoring samples for clearance purposes by PCM to confirm completion of removal, encapsulation or enclosure of ACBM [asbestos-containing building material] that is less than or equal to 3,000 square feet or 1,000 linear feet. The section [response action] shall be considered complete when the result of samples collected in the affected functional space show that the concentration of asbestos for each of five samples is less than or equal to the limit of quantitation for PCM, or 0.01 f/cc [10,000 f/m³] of air." After the first 2 years or if the job exceeds the minimum size criteria, the regulation requires a three-step process using TEM analysis for determining successful completion of a response action. After visual inspection, the final two steps involve a sequential evaluation of five samples taken inside the work site, five samples taken outside the work site, two field blanks, and one sealed blank. Final clearance is granted if the average asbestos fiber concentration determined from the samples collected in the work site is below the prescribed limit of detection (LOD) for the TEM method. Additional evaluations are required if the LOD test fails.

A previous EPA guidance publication^[33] noted that the basis for collecting five samples was to increase the statistical confidence in the measurement and thus reduce the possibility of wrongly approving a contaminated facility. Statistically, <u>seven</u> samples are required for a method with a CV of 1.5 to provide a 90% confidence of detecting a fivefold difference from the ambient concentration; however, for practical reasons, a minimum sample size of five was recommended. The same EPA publication also recommended that samples from the work site should be taken from one homogeneous area which is defined as "a contiguous area in which one type of abatement procedure was performed to remove the same type of ACM." Asbestos removal at most abatement sites is performed using various removal procedures to remove different types of ACM from a number of separated areas within a building. Even within contiguous areas, several different types of abatement procedures may be employed. The "homogenous area" requirement was omitted in the enactment of the AHERA regulation.

In addition to these changes in the sampling protocol and clearance strategy, AHERA prescribed a new TEM protocol which differs from NIOSH method 7402 and OSHA reference method (Appendix A of the revised standard^[13]) in several ways:

<u>Aspect Ratio</u> - Fibers must have a 5:1 or greater aspect ratio to be counted, as opposed to the 3:1 ratio prescribed by NIOSH and OSHA for evaluating airborne exposure. A review^[34] of several EPA studies (including this project) indicated that fiber counts based on a 5:1 aspect ratio ranged from 13 to 61 percent lower than fiber counts obtained using a 3:1 aspect ratio. Thus, lower airborne asbestos concentrations are reported when the 5:1 aspect ratio is used.

<u>Filter Medla</u> - Air samples may be collected either on polycarbonate or cellulose ester media; however, the cellulose ester media specified is a 0.45 μ m pore size filter with a 5.0 μ m pore size backing filter. Both NIOSH Method 7402 and the OSHA standard specify a 0.8 μ m pore size filter. This difference may affect the distribution and orientation of the fibers collected.

Filter Blank Contamination and Interlaboratory Variability - A more complicated issue involves the analysis of fiber contamination found on unused (blank) filters and the determination of the LOD. In 1985, the EPA provided polycarbonate filters from the same production lot for this and several other studies. The investigators for these studies reported high and variable fiber counts on blank filters as they were received from the EPA. A peer review workshop to discuss the topic was convened by the EPA in April 1986. The findings were presented in "Filter Blank Contamination in Asbestos Abatement Monitoring Procedures: Proceedings of a Peer Review Workshop."^[35] Two major consequences of this contamination were identified: One was the need for improved quality control to reduce contamination in the polycarbonate media during its manufacture. The other was the high interlaboratory variability which became obvious when analyses of contaminated blank polycarbonate filter media were compared. Figure 2-1, which is reproduced from the report of this workshop, illustrates these comparisons.

In addition to variable contamination of the filters, a major confounding source of interlaboratory variability was the lack of standardization for sample preparation and analysis used between laboratories. Although the polycarbonate filters were analyzed by the Yamate modified EPA provisional method, ^[19] subtle differences in the preparation, instrumentation, and procedural interpretation by the analyst greatly affected the fiber count. ^[35] A fundamental treatment of this subject is presented in "Accuracy of Transmission Electron Microscopy for the Analysis of Asbestos in Ambient Environments."^[36]

As a result of the workshop, the EPA evaluated asbestos contamination in a batch of newly-manufactured polycarbonate filters that were manufactured using improved quality controls to reduce asbestos contamination. This was compared to a batch of typical cellulose ester filters (which were not expected to show appreciably contamination based on past experience). Two laboratories analyzed 50 samples of each type. The mean asbestos contamination was found to be 10 fibers in 1,000 grids for the cellulose ester media, and 180 fibers per 1,000 grids for the polycarbonate. These values correspond to 2 structures/mm² and 35 structures/mm², respectively.

The ACM in Schools Regulation^[32] states: "When volumes greater than or equal to 1,199 L for a 25 mm filter and 2,799 L for a 37 mm filter have been collected and the average number of asbestos structures on samples inside the abatement area is no greater than 70 s/mm² of filter, the response action may be considered complete without comparing the inside samples to the outside samples. EPA is permitting this initial screening test to save analysis costs in situations where the airborne asbestos concentration is sufficiently low so that it cannot be distinguished from the filter contamination/background level (fibers deposited on the filter that are unrelated to the air being sampled). . . . The value of 70 s/mm² is based on the experience of the panel of microscopists who consider one structure in 10 grid openings (each grid opening with an area of 0.0057 mm²) to be comparable with contamination/background levels of blank filters . . . " This "experience" refers to analyses of the contaminated polycarbonate filter medium described above. The analytical method requires laboratories to determine the actual contamination of the blank filters for each media lot. As noted above, however, AHERA permits a contamination level of 70 s/mm² to be assumed for clearance purposes, i.e., if the sample filters contain 70 or fewer s/mm², the room may be reoccupied.

If the average indoor sampling concentrations are greater than 70 s/mm², the area may be recleaned, retested, and analyzed as described above, or a Z-test may be performed. The Z-test is a statistical comparison of indoor clearance

Figure 2-1

Comparison by Laboratory of Asbestos Structure Counts on Blanks*

1 NC CRONE CD 2 SAMPLES YAMATE	
Z NC CRONE 4 SAMPLES YAMATE D 2 SAMPLES	
3 HC CRONE 6 SAMPLES NIDSH B 1 SAMPLE	
4 HC CRONE II SAMPLES	
5 HC CRONE 6 SAMPLES NIDSH B 1 SAMPLE	
6 ETG 7 SAMPLES	
7 HC CRONE 4 SAHPLES 1 SAMPLE	
9 HE CRONE EPA 2 SAMPLES NIOSH 3 SAMPLES	
10 MC CRONE EPA NICSH 3 SAMPLES 3 SAMPLES	
C 1G 2C 30 40 5C	

* From: Filter Blank Contamination in Asbestos Abatement Monitoring Procedures: Proceedings of a Peer Review Workshop.^[26] samples vs. outdoor ambient samples. It is used to determine whether the abatement response action is complete, i.e., if clearance has been achieved for reoccupancy. Powers and Cain reported the probability of passing the Z-test for various room, filter media, and ambient asbestos structure concentrations, as shown in Figures 2-2 and 2-3.^[37] To illustrate the use of these figures, suppose that the filter media are contaminated with 70 s/mm² and a room is cleaned to the 0.005 s/cc (5,000 s/m³) ambient asbestos concentration. The probability of passing is only 70%, whereas if the filter media contamination is less than 17 s/mm², the probability of passing is 99%. Thus the media contamination can lead to false positives for room contamination which would potentially require additional but unwarranted cleaning.

As noted above, the ACM in Schools Regulation states that clearance can be achieved without comparing inside samples to the outside samples if the inside samples pass a screening clearance criteria of 70 s/mm². This is done "... to save analysis costs where airborne asbestos concentration is sufficiently low so that it can not be distinguished from the filter contamination"^[32] The value, 70 s/mm,² is 4 times the analytical sensitivity of the polycarbonate method. The analytical sensitivity is stated to be no greater than 1 fiber in 10 grids, or 0.005 s/cc (5,000 s/m³) for a 37 mm filter. Based on these assumptions, the clearance limit for TEM, using a 3,000 liter sample and a 37 mm filter, is 4 x 0.005 s/cc, or 0.02 s/cc (20,000 s/m³). Ambient asbestos concentrations are usually an order of magnitude lower than this, typically in the range of 0.002 to 0.005 s/cc (2,000 to 5,000 s/m³).

Fig 2-2 Probability of Passing the Z-Test for Asbestos Abatement Clearance when Outdoor Ambient Concentration is 0.005 (f/cc)

Fig 2-3 Probability of Passing the Z-Test for Asbestos Abatement Clearance When Outdoor Ambient Concentration is 0.02 (f/cc)

3. SITE AND PROCESS DESCRIPTION

3.1. SITE DESCRIPTION

This study was conducted in public school buildings typical of those found in a large city. Two rooms in each of four schools were selected for the measurement of airborne asbestos concentrations. The rooms were visually inspected and found to be fairly clean, having no apparent damage to the pipe lagging and little potential for contamination from the other types of fibers, e.g., textile and cellulose fibers from drapes, carpets, ceiling, etc. These "controlled areas" were isolated to restrict interaction with areas and activities outside the study area. All air ducts, holes, and windows in these rooms were sealed with polyethylene sheeting (poly) and duct tape; door openings were sealed off with a two-sheet poly baffle. After sealing the rooms, pre-removal asbestos levels were determined in each room using nonaggressive, then aggressive sampling methods. During ACM removal, personal and area samples were taken to determine asbestos exposures of removal workers during these operations. Finally, after the rooms were cleaned, but before final inspection by the removal contractor, nonaggressive and aggressive sampling methods were again used to determine asbestos in each room after the removal was completed.

Table 3-1 lists the survey dates and the dimensions of the rooms in which the asbestos abatement was performed and evaluated. The analyses of bulk samples taken from the pipe lagging indicated varying percentages of chrysotile (Table 3-1). No actinolite, tremolite, amosite, or anthophyllite asbestos were detected in these samples. Table 3-2 lists the number and types of pipe fittings and the linear feet of pipe from which lagging was removed at each site. The renovation included concurrent removal of ACM from other areas in the buildings at the time of these surveys. As can be determined by Table 3-2, the amount of pipe lagging removed from the rooms designated for study was roughly 10 to 40% of the total asbestos removal work performed in any one building. Personal and area samples of airborne asbestos were obtained during removal work in a third room in two buildings in order to increase the amount of data collected.

3.2. PROCESS DESCRIPTION

Asbestos removal is a complex and labor-intensive task which requires special knowledge, training, experience, and exceptional care to be performed safely. There is a need for careful planning and coordination of the activities involved. If an expert in asbestos removal is not available within the responsible organization, a competent consultant should be engaged to assure that the building owner, occupants, and removal workers are protected by a definitive and complete specification of work and that a reputable asbestos removal contractor is selected. On-site monitoring and control by a

		Survey	Dates				Volume	Bulk Sample Analysis
Facility	Walk- Through	Pre- Removal	Removal	Post- Removal	Location	Dimensions (Feet)	(Cubic Feet)	Chrysotile Cellulose/ Asbestos Other fiber
-	06704	06/14	06/18-21	07/09	Room A	35 x 23 x 13.5	10,868	3-inch Pipe Lagging 1% 2-inch Pipe Lagging 20-25%
			00/10-21	07709	Room B	35 x 33 x 12.5	14,438	
					Room C	116 x 35 x 12.5	50,750	Pipe Lagging 30-35%
			06 (25-28	07/11	Room D	33 x 22 x 15	10,890	Pipe Lagging 20-25%
	00704	00/12	<i>vo/23-2</i> 8	07711	Room E	41 x 36 x 15	22,140	
					Room F	32 x 23 x 12	8,832	Airseal lagging 30-40% 40-50% Joint cement
#3	06/04	06/13	07/01-03	07/10				10-15% 1-2%
					Room G	42 x 25 x 12	12,000	Pipe lagging 10-15% 1-2%
					Room H	29 x 25 x 11	7,975	Pipe lagging 5% 10-15%
*	06/04	07/12	07/15-17	07/18	Room I	30 x 25 x 9	6,750	Pipe Lagging 5-7% 2-3%
					Room J	29 x 24 x 11	7 ,65 6	Pipe Lagging 20% 10-15%

TABLE 3-1. ASBESTOS-CONTAINING PIPE LAGGING REMOVAL STUDY

Facility/ Room	Pig Ells No.	<u>pe Fil</u> Tees No.	ttings Flanges No.	Pipe Hangers No.	Pipe*/ Surfaces No.	Liu 6-in	neer 5-in	Feet Pip 4-in	tennovo e <u>Sizo</u> 3-in	ed Du E 2-in	ring Su 1.5-in	<u>vey</u> Total Feet	<u>Renoval</u> Linear Feet	Contract** Number of Room/Areas
Facility #1 Room A Room B Room C	15 13 10	5 5 5	- -	7 6 7	7 5 4		40	- - 91	45 - 9 Tota	ນ 22 22 23	- - -	98 65 <u>125</u> 288	1800	15
Facility #2 Room D Room E Room E ^{theo}	21 9 13	7 4 4	2 1 1	7 3 5	6 6 6	- 45 30	58 - -	-	70 12 45 Tota	15 2 2 1	- - -	143 59 <u>77</u> 279	1230	13
<u>Facility #3</u> Room F Room G	13 18	6 6	- -	10 4	9 8	30 45	-	15 15	30 9 Tota	85 -	-	160 <u>69</u> 729	2350	12
Facility #4 Room H Room 1 Room J	10 10 11	4 5 6	-	4 4 4	5 9 6	- -	30	-	42 50 50 Tota	9 28 28 8	14 5 4	65 113 <u>82</u> 260	710	10

TABLE 3-2. DESCRIPTION AND LINEAR FEET OF PIPE LAGGING REMOVED

* Intersections of pipe with walls or ceiling.

** Total linear feet of asbestos pipe lagging removed and number of areas cleaned in each facility.

*** Work completed by the removal crew prior to the post-removal study, but not observed by the survey team. In addition, approximately 27' of 6-inch pipe lagging was reportedly removed from a storage area adjacent to the original poly enclosure without the use of glove bag control techniques and while the poly barriers were open to the controlled area. knowledgeable representative of the owner is also critical. These prerequisites should be provided prior to the start of the removal operations.

Typically, the removal work involves three phases: preparation, removal, and decontamination. A generic description of these activities is given below to provide an overview of industry practices; however, each abatement project will vary with the specific circumstances. A summary of the removal procedures observed at the four buildings surveyed in this study follows the generic description.

3.2.1. Generic Overview of an Asbestos Removal Activity

3.2.1.1. Preparation--

The site is cleaned, cleared of all movable materials, and isolated. Entrance and egress contamination control facilities are established: one with showers and change rooms for personnel; the other for waste material handling. All other access is sealed off by taping poly over windows, air vents, unused doors, etc. Surfaces, immovable furnishings, and structures not involved in the removal are covered and sealed with poly and the lighting fixtures are removed.

3.2.1.2. Removal---

The ACM are wetted (saturated, if possible) prior to and during their removal. Removal typically involves cutting, scraping, brushing, or other operations performed with hand tools to separate the ACM from the ceilings, beams, pipes, and other structures to which they were originally applied. The wet debris is collected, placed in sealed and properly labeled bags, and removed from the controlled area. Work is performed in small increments to avoid accumulation of waste. In order to contain the fibers and to prevent contaminating the outside air, the containment enclosure is maintained under "negative pressure," i.e., there is a net exhaust from the room or enclosure through HEPA filters to the outside of the building to provide a pressure differential. Air should be exhausted in sufficient quantity with the introduction of clean make-up air to achieve effective dilution. The airflow patterns within the enclosure should also be optimized to provide maximum benefit of the dilution air in reducing fiber concentration. The EPA recommends four air changes per hour; [9] however, some contractors use twice this amount. When large air volumes cannot be exhausted, a portion of the air which has passed through the HEPA filters is sometimes recirculated to the work area. Work should begin at the point furthest from the exhaust and proceed toward the exhaust. Local exhaust ventilation or vacuum pick-up may be used in the immediate proximity of the removal operation or other fiber release points. The workers inside the containment area must wear appropriate protective equipment, including approved respiratory protection and protective clothing.

3.2.1.3. Decontamination---

The asbestos fibers remaining after the removal operations must be removed from all surfaces and from the air. This usually requires several cycles of cleaning separated by sufficient time to allow the airborne fibers to settle. Some contractors include a "blowdown" similar to that used for "aggressive sampling" before the final cleaning procedure. These actions are combined with continuous air filtration in the containment area. All contaminated waste must be disposed of in accordance with EPA and local government regulations.

3.2.2. Asbestos Removal Practices Observed in this Study

For the present study, in which only asbestos pipe lagging was removed, glove bags were used as the primary control of asbestos release. Observations are summarized below. Based on these observations, many of the techniques delineated in Section 6 Recommendations should be considered.

3.2.2.1. Preparation--

The contract for asbestos removal in the buildings that were studied specified the use of glove bags as the primary emission control in lieu of total room containment and ventilation. It also required the installation of poly barriers in stairways and hallways to separate work areas from the rest of the building. Decontamination showers were not required. The floors beneath the pipes being abated were covered with poly to facilitate cleanup, except where concrete floors contained a floor drain. As noted previously, the rooms in which abatement clearance measurements were made were also enclosed in poly barriers, but neither exhaust nor make-up air was supplied to the enclosed areas.

Before starting the removal, the contractor enclosed all of the piping in an envelope fabricated from poly sheeting and duct tape. The surface of the lagging was misted with amended water (water containing wetting agents, penetrants, and/or other agents to enhance the wetting-down process) to control surface dust prior to enclosing it in the poly. A length of poly sheeting was brought up from underneath the pipe and draped over the pipe lagging. The two edges were rolled together and stapled at the top of the lagging to form a loose-fitting, cylindrical envelope around the pipe. Duct tape was used to seal the longitudinal seam and the ends of the envelope to the pipe lagging. Figure 3-1 shows two workers making an enclosure of poly around a pipe and a room ready for removal activity.

3.2.2.2. Removal---

Workers donned disposable work clothing and approved respirators before entering areas where the asbestos removal took place. Although the work crew in this study had had experience in the general removal of asbestos, they were not trained in the proper use of glove bags. During the first day of asbestos removal, the glove bags were hung at widely separated intervals and taped to the poly envelope over the pipe lagging with duct tape. The workers did not use the gloves in the bags, but rather used the bags as receptacles for collecting the debris. The top of the bag was left open and the workers reached in through the open top to cut away the poly envelope, loosen the lagging and allow it to drop into the bag. The bag was then moved along the pipe and the process was repeated. The lagging was wetted as it was removed from the pipe. Water sprayers (2- to 3-gallon, hand-pump garden sprayers) fitted with 30-inch hoses were elevated to the working level and were often hung from the pipes. This required workers on ladders and platforms to climb down periodically to refill the sprayer with amended water and pump up the pressure. The pipe was washed with water and rags, usually after the bag had been moved to the next location.

As the work progressed, the workers learned to better utilize the glove bags based on recommendations from the survey team, on trial and error, on

Figure 3-1. Preparation for Removal of Asbestos-Containing Pipe Lagging.

In the upper photograph workers are wrapping a pipe with polyethylene. The insulation had been previously misted with water to reduce the potential for generating dust. The lower photograph shows a room ready for removal operations to begin. Pipes and immovable objects are covered and windows and ducts are sealed with poly and duct tape. An empty glove bag is in place at the wall/pipe intersection at the left. videotaped instructions, ^[38] and on training by a National Asbestos Council glove bag instructor. ^[39] Although the study was not designed to provide these instructions, it was the opinion of the NIOSH researchers that much improvement in work practices had been achieved by the end of the study. The following techniques were in general use by the end of the study, and the authors believe them to be appropriate work practices and procedures:

- Tools for cutting metal bands and lagging were placed inside the glove bag, and the bag was hung from the poly wrapped, lagged pipe. Depending on the type of bag, it was taped or zipped to form a seal along the length of pipe and the bag ends (sleeves) were taped or strapped to the poly-jacketed pipe. The workers preferred to use straps for sealing the bag ends.
- The poly-envelope and metal bands enclosed within the sealed bag were first cut and removed. Then the lagging was wetted, cut longitudinally along the full length of one preformed block, and circumferential cuts were made with a wire saw or blade, preferably at the block joints. The asbestos block was pried apart at the seam, rewetted, and dropped to the bottom of the bag. Amended water was sprayed onto the lagging and the bare pipe within the glove bag was washed clean with wet rags.
- Hard-to-clean places were brushed with a nylon-bristle bottle brush. All work was performed within the bag using the gloves (Figure 3-2). The end sleeve straps were loosened or the sleeves were untaped and the bag was slid along the poly-covered pipe to the next removal site (Figure 3-3).
- The spray nozzles and wands were inserted into the bags through special ports and sealed with duct tape if necessary. They were fitted with 10- to 15-foot hoses, so that the tanks did not have to be elevated to the working level. A support worker, at floor level, refilled the sprayer tank with amended water and pumped up the pressure. It greatly enhanced the ability and inclination of the removal workers to use sufficient wetting for control of fiber emissions.
- After sufficient debris had been collected, the interior surface of the bag was washed down; a HEPA-filtered vacuum system was used to evacuate air from the bag and a strap was used to cinch the bag closed prior to release of the seal and removal from the pipe. The bags were then resealed and then placed in a second bag on which asbestos warning labels were printed. The outer bag was also sealed and subsequently removed for disposal.

3.2.2.3. Decontamination--

Spilled material was removed from the floor with a HEPA-filtered vacuum cleaner throughout the shift. As work was completed in each area, the floor was wet mopped. The sealed bags of waste were removed from the enclosure prior to post-removal air sampling, but the poly seals on windows, vents, and doors were kept in place to minimize contamination from other areas and activities.

Figure 3-2. Working in a Glove Bag

The upper photograph shows two workers working on ladders. One worker has his hands inside the glove bag and is removing asbestos pipe lagging. The other worker is assisting by taping up a loose enclosure point. In the lower photograph workers are on a scaffold. The second worker is using a portable sprayer to wet down debris in the bag.

Figure 3-3. Moving a Glove Bag

This is a critical task. The inside walls of the bag and the debris contained have been washed down with water and the top of the bag opened to move it down the pipe. The photo shows the top untaped and the two workers are supporting its weight and maneuvering it over the next section of poly-wrapped pipe. Obstructions such as pipe hangers, pipe fittings, and valves make this a difficult task. Workers must use very good work practices to reduce the potential for fiber release.

4. METHODOLOGY

4.1. AIR SAMPLING STRATEGY

4.1.1. Overview

In order to characterize the effectiveness of containment by glove bags, personal breathing zone (PBZ) samples were collected on workers and area air samples were taken within the work enclosure. Area samples were also taken in adjoining hallways outside the work enclosure to determine the potential interaction with other removal activities occurring outside and within the controlled areas. Ambient samples were taken outside the building to establish background fiber concentrations. To assess the overall efficacy of the asbestos removal and cleanup operations, additional samples were taken prior to and following the completion of the removal work. Because of time constraints, the post-removal samples were collected after initial cleaning by the removal crew, but prior to the clearance testing performed by the contractor.

4.1.2. Personal Air Samples

PBZ samples were collected only while workers were actively engaged in site preparation, asbestos removal, and other associated activities including waste collection and disposal, decontamination, and equipment operation and maintenance. Normally, two sequential 2- to 3-hour personal samples were taken daily for each of the four workers to determine time-weighted-average exposures. In addition, six to eight 15-minute, short-term exposure samples were collected during the performance of work tasks. As a result, about 14 to 16 PBZ samples were collected during each 5- to 6-hour work shift.

4.1.3. Area Air Samples

Area samples were collected both inside and outside the controlled work area on approximately the same schedule as the personal samples. Two 2- to 3-hour interior samples were collected daily using a cart-mounted, mobile, sampling tree that was positioned proximate to the removal activity. These samples were located so as to provide an indication of the effectiveness of the source controls and the magnitude of exposure during different activities. A similar series of area samples was collected in the middle of the room, away from the workers, during the removal activity to determine the fiber concentration in the room during preparation and removal. Figure 4-1 is a photograph showing both the cart-mounted apparatus used to collect samples proximate to the work site and the stationary sampling tree used to obtain background samples of the general room contamination. Daily samples were collected in the hall adjacent to the survey area, and ambient samples were taken by drawing outside air through filters located in open windows well removed from the work area.

Figure 4-1. Area Sampling Equipment.

In the foreground is a sampling tree used for obtaining room background air samples at a point remote from the removal activity. A sampling tree mounted on a mobile cart, shown in the background, was used to obtain samples proximate to the work activity.

4.1.4. Direct-Reading Monitors

Direct-reading GCA Fibrous Aerosol Monitors (FAM), Model No. 1, were used to observe short-time fluctuations in fiber concentrations and to determine if a correlation existed between the work practices and exposure levels. One FAM (with a data logger for storing the output from the FAM) was positioned adjacent to the interior work area sample tree. This data logger recorded the background fiber count inside the enclosure at 1-minute intervals. Two cart-mounted, mobile FAMs were used to detect changes in fiber concentration every 10 minutes in the vicinity of the various work activities. The removal operations were also videotaped to assist in subsequent interpretation of the FAM readings.

4.1.5. Pre- and Post-Removal Air Sampling

To compare the two contamination assessment methods, both pre- and post-removal air samples were obtained by sampling for an 8-hour period in the nonaggressive mode, followed immediately by sampling for an 8-hour period in the aggressive mode. Nonaggressive (static) sampling was performed in a quiescent atmosphere, allowing at least 24 hours for the room to dry out when the sampling followed removal and cleaning. For aggressive (dynamic) sampling, dust and fibers were dislodged from surfaces during a 5- to 10-minute blowdown with a leaf blower; two oscillating pedestal fans were then operated to keep the dust and fibers suspended during the entire 8-hour sampling period. Two samples were collected adjacent to, but outside, the poly-baffled entrance to the room during both the nonaggressive and aggressive sampling periods. Two side-by-side outdoor ambient samples were collected throughout the 16-hour period in which these sampling methods were performed.

4.2. EVALUATION METHODS

4.2.1. Personal Sampling

The sequential 2- or 3-hour, PBZ samples were collected using DuPont P-4000 pumps at a measured flow rate between 2.5 and 3.5 lpm; each sample involved approximately 400 liters of air. The sampling device consisted of a 25 mm diameter three-piece cassette, in an open-face mode with a 50 mm extension cowl. The cassette contained a 0.8 μ m pore size, cellulose ester filter, Type AA, and a backup pad, both manufactured by the Millipore Corporation. The cassettes were wrapped with metal foil, as a precaution to minimize possible localized effects of static electricity; conductive cowls were not available at that time.

4.2.2. Workplace Area Sampling

Duplicate area samples were taken using side-by-side 37 mm diameter polycarbonate and 25 mm diameter cellulose ester filters. The 25 mm sampling devices were the same as those described for personal sampling. The 37 mm sampling device consisted of a three-piece cassette using a 0.4 μ m pore size polycarbonate filter with a 5.0 μ m pore size cellulose ester backup filter and a supporting pad. The polycarbonate filters, manufactured by Nucleopore Corporation, were supplied by the EPA Manufacturing and Service Industries Branch. During sampling, the cassette covers were removed to provide open-face sampling. DuPont P-4000 pumps, as described above, were used to collect these samples. The same sampling array and flow rate was also used to collect area samples adjacent to but outside the poly-baffled entrance to the room.

The ambient outdoor samples were collected at a measured flow rate between 2.0 and 3.5 lpm to obtain approximately 1,500 liter samples (ca. 8 hours).

4.2.3. Pre- and Post-Removal Air Sampling

Nine 8-hour samples were collected simultaneously using three different media: (1) 37 mm diameter, 0.4 μ m pore size, polycarbonate filters followed by a 5.0 μ m pore size, cellulose ester filter between the primary filter and the backup pad, (2) 37 mm diameter cellulose ester filters (0.8 μ m pore size) with a backup pad, and (3) 25 mm diameter cellulose ester filters, as described under "Personal Sampling." All samples were collected in three-piece open-face cassettes. The 25 mm cassettes were wrapped with metal foil to minimize possible effects of static electricity. Six of the nine samples at each station were collected at a measured flow rate between 3.0 and 3.5 lpm, utilizing individual limiting orifices. The vacuum source for the nine samples was a manifold connected to a Gast 0485 vacuum pump in parallel with a smaller Thomas 106-83F pump. One sample of each filter type was also collected at each station using DuPont P-4000 pumps at a measured flow rate between 2.5 and 3.5 lpm. The sample cassettes were hung face down in alternated positions from a ring which was supported approximately 5 feet above the floor (Figure 4-1).

The outdoor ambient samples and the samples located in the corridor outside the surveyed rooms were collected on 25 mm cellulose ester filters for 8 to 16 hours to obtain approximately 1,500 to 3,000 liter samples.

4.2.4. Real-Time Fiber Monitoring

GCA Fibrous Aerosol Monitors (FAM), Model No. 1, were used to monitor variations of fiber concentrations during the work shift. Two units were placed near the removal operations to observe variations in fiber concentrations as a result of work practices; a third unit was used to monitor airborne fiber contamination in the removal area. Metrosonics Model No. 331 Data Loggers were utilized to record sequential FAM readings.

Air temperature and relative humidity were determined using an aspirated psychrometer.

4.3. ANALYSIS

4.3.1. Phase Contrast Microscopy

4.3.1.1. Manual--

The 25 mm cellulose ester filters were analyzed by PCM in accordance with NIOSH Method 7400.^[14] All fibers with a 5:1 (or greater) length-to-width ratio were counted using the B counting rules. Analyses were performed by NIOSH in Cincinnati, OH and by UBTL Inc. (now Datachem) in Salt Lake City, UT.

4.3.1.2. Magiscan II--

A Magiscan II (M-II) image analysis system with asbestos fiber counting software was used to augment the PCM. The M-II system is attached to a standard phase contrast light microscope and an image of the particulates collected on the filter is displayed on a video monitor. A computer program produces a fiber count based on the aspect ratio and length.

4.3.2. Transmission Electron Microscopy

Polycarbonate filters were analyzed by the Yamate Revision to the EPA Provisional TEM Method.^[19] All structures were identified and sized, and were categorized as individual fibers, fiber clusters, bundles, and clumps. The sum of all these categories was reported as the total asbestos structures. Selected area electron diffraction (SAED) was used to identify fibers as either amphiboles, chrysotile, or nonasbestos. When a diffraction pattern could not be evaluated, Energy Dispersive X-ray Analysis (EDXA) was performed to further assist in the identity of these structures.

The TEM analyses were performed by NIOSH scientists and personnel from PEI, Inc., using facilities in the NIOSH laboratory. Some analyses were performed in another laboratory, but they did not correlate well with the results from the NIOSH laboratory. Because the work performed in the NIOSH laboratory was carefully scrutinized and quality controlled, a number of these samples were reanalyzed in the NIOSH laboratory. All TEM sample results reported are from analyses made in the NIOSH laboratory.

Several cellulose ester filter samples which PCM analysis had indicated to contain high, medium, and low fiber were also analyzed in the NIOSH laboratory by TEM using the modified Burdett and Rood^[40] or the NIOSH 7402 method.^[20] All structures were identified in the same manner as that described above for the samples collected on polycarbonate.

5. RESULTS AND DISCUSSION

5.1. FIELD BLANKS AND LOWER LIMITS OF DETECTION

In Sections 1 and 2, some of the uncertainties of the analytical methods were discussed. In this section, further delineation of these issues and how they affected the interpretation of the analytical results is presented.

5.1.1. Phase Contrast Microscopy

Only one of 74 field blanks analyzed by PCM was above the limit of detection (LOD); thus, no correction for fiber contamination of the cellulose ester filters was necessary. The estimated LOD for Method 7400 is 7 fibers/mm² of filter area. [14-17] This is equivalent to about 1,500 fibers per filter for 25 mm diameter filters and 3,500 fibers per filter for 37 mm diameter filters; thus, for a 1,500 liter sample, the LOD is 1,000 and 2,000 f/m³, respectively. When sample results were reported to be "less than the detection limit," a value of one-half of the LOD was used for statistical computations.

5.1.2. Transmission Electron Microscopy

As discussed in Section 2.2, two problems affecting the validity of TEM analyses were identified by the EPA: high interlaboratory variability of analytical results and asbestos contamination of the polycarbonate sampling media during manufacture. Both of these problems were encountered in the present study. First, analysis of samples obtained from two of the buildings surveyed and analyzed in the EPA laboratory were reported to have very low fiber counts and many were reported nondetectable. When reanalyzed in the NIOSH laboratory, substantial numbers of fibers were found. Second, the analyses of the blank polycarbonate filters from this study exhibited the same range of asbestos contamination as did the polycarbonate filters supplied by the EPA to other laboratories (illustrated in Figure 1). To overcome this difficulty and to reduce the cost of analyses, the EPA has assumed that for clearance purposes the contamination level of the filter media is 70 f/mn^2 . A 37 mm filter has an effective collection area of 855 mm^2 ; therefore, for the contamination level assumed, about 60,000 fibers per filter, the LOD for a 3,000 liter sample is $20,000 \text{ f/m}^3$.

5.2. CONFIDENCE LIMITS

5.2.1. Phase Contrast Microscopy

For PCM fiber analysis, the coefficient of variation, CV (also known as the relative standard deviation, RSD), has two components. One component of the CV for counting randomly (Poisson) distributed fibers on a filter surface is a function of the number of fibers counted. This is related to the sample loading (the number of fibers on the filter) and, hence, the CV may differ for

each sample collected. The other component of the CV, termed the subjective component of variability, is a function of differences in the counts of the analyst(s) due to the amount of training and experience of the microscopist, differences in microscope equipment, and quality assurance practices.

The two laboratories used in this study showed a PCM analysis correlation coefficient of 0.91 and an interlaboratory coefficient of variation of 0.41 was demonstrated based on a 25-sample comparison. Additional discussion of interlaboratory comparability is included in NIOSH method 7400.^[17] Because of the wide variation of interlaboratory results and in the absence of a known CV between laboratories, a value of 0.45 is used in this method for the subjective component of variability. A graph is included in the method to illustrate the interlaboratory precision of fiber counts, whereby a 90% confidence interval on the mean count can be estimated from a single sample fiber count. Immediately preceding the graph, it is stated that ". . . a further approximation is to simply use +213% and -49% as the upper and lower confidence values of the mean for a 100 fiber count." These percentages can be applied directly to the air concentrations as well.

Table 5-1 was prepared to demonstrate the range of upper and lower 90% confidence limits which would be expected if a group of laboratories having an interlaboratory CV of 0.45 analyzed identical samples. The table shows the confidence limits for a 10 grid or 100 fiber count. (Part A of Table 5-1 is for use with 25 mm filters and Part B is for 37 mm filters.) Because the range varies with the number of fibers counted and the sample volume, computations were also made for several fiber counts using the three sample volumes that are relevant to the present study: 400 liters, the approximate volume collected for personal samples; 1,500 liters, for pre- and post-removal and daily ambient samples; and 2,500 liters, for ambient samples. These tables may be used to approximate the range of values to be applied with 90% confidence when interpreting the results of individual samples analyzed by the same laboratory with respect to an occupational exposure or clearance standard.

5.2.2. Transmission Electron Microscopy

An intralaboratory CV of 0.35 was calculated for the fiber analysis by TEM used in this study. In general, there is insufficient experience with TEM to fully establish interlaboratory confidence limits. EPA has reported results of similar studies which indicate an overall CV of about 1.5 with an analytical component of about $1.0.^{[33]}$ The assumptions used in the preparation of the range of PCM confidence limits presented in Table 5-1 may not hold for the greater variability associated with TEM. To provide some insight as to how a CV of 1.5 affects the 90% confidence limits, it is assumed, for the purpose of illustration, that the (natural) logarithm of the asbestos counts as determined by TEM is normally distributed. If this is the case, then the approximate 90% confidence limit for a true mean count of 1,250,000 f/m³ by TEM on a 37 mm filter would be 378,000 to 13,500,000 f/m³. As seen in Table 5-1, the corresponding interval for a 1,250,000 f/m³ PCM count on a 37 mm filter is 638,000 to 3,913,000 f/m³. These intervals are an indication of the uncertainty that can arise when interpreting the result of a single field sample with respect to an exposure or clearance standard.

Fibers counted/	Fibers		<u>r for:</u> Upper	Hean and (Range) of Fiber Concentrations (f/m ³) within 90% Confidence Limits for Sample Volumes:							
100 grids	Filter	Limit	Limit	400 liters	1500 Liters	2500 liters					
A. LIMITS FOR 25-I CELLULOSE ESTER FILTERS											
•	500,500	0.51	3.13	1,251,000 {638,000 - 3,916,000}	334,000 (170,000 - 1,045,000)	200,000 {102,000 - 626,000}					
100	49,045	0.51	3.13	123,000 {63,000 - 385,000}	33,000 {17,000 - 103,000}	20,000 (10,000 - 63,000)					
50	24,522	0.51	3.18	61,000 {31,000 - 194,000}	16,000 {8,000 - 51,000}	10,000 (5,000 - 32,000}					
10	4,904	0.43	3.57	12,000 {5,000 - 43,000}	3,000 {1,000 - 11,000}	2,000 {1,000 - 7,000}					
7 (NIOSH LOI	3,433	0.40	3.78	9,000 {4,000 - 34,000}	2,000 {1,000 - 8,000}	1,000 {0 - 4,000}					
3 (UBTL LOD)	1,471	0.31	4.66	4,000 {1,000 - 19,000}	1,000 (0 - 5,000)	1,000 (0 - 5,000)					
		L,,	B.	LIMITS FOR 37-mm CELLULOS	E ESTER FILTERS						
•	1,111,500	0.51	3.13	2,779,000 {1,417,000 ~ 8,698,000}	741,000 (378,000 - 2,319,000)	445,000 {227,000 - 1,393,000}					
460	500,000	0.51	3.13	1,250,000 {638,000 - 3,913,000}	333,000 {170,000 - 1,042,000}	200,000 (102,000 - 626,000)					
100	108,917	0.51	3.13	272,000 {139,000 - 851,000}	73,000 {37,000 - 228,000}	44,000 (22,000 - 138,000)					
50	54,459	0.51	3.18	136,000 {69,000 - 432,000}	36,000 (18,000 - 114,000)	22,000 {11,000 - 70,000}					
10	10 ,8 92	0.43	3.57	27,000 {12,000 - 96,000}	7,000 {3,000 - 25,000}	4,000 (2,000 - 14,000)					
7 (11:05H LCI	7,624))	0.40	3.78	19,000 {8,000 - 72,000}	5,000 {2,000 - 19,000}	3,000 {1,000 - 11,000}					
3 (UBTL LOD)	3,268	0.31	4.66	8,000 (2,000 - 37,000)	2,000 (1,000 - 9,000)	1,000 {0 - 5,000}					

TABLE 5-1. 90% CONFIDENCE LINITS FOR A SINGLE PCH AMALYSIS BY MIOSH METHOD 7400-B (ASSUMING AN INTERLABORATORY SUBJECTIVE COMPONENT OF .45)

* Naximum Allowed Loading = 1300 fibers/sq mm.

5.3. SAMPLING RESULTS

Subsequent tables summarize data from the four survey reports.[1-4]Appendix A consists of the tables Included in each of the facility reports. The tables in Appendix A are based on analytical data obtained by PCM and Magiscan II, tabulated in Appendix B, and by TEM, tabulated in Appendix C.

5.3.1. Work Activity Samples

Although this study was not undertaken to determine compliance with asbestos standards, the OSHA PEL (200,000 f/m^3) and the NIOSH REL (100,000 f/m^3) concentrations are used in the following discussion as points of reference.

5.3.1.1. Personal Samples--

Daily time-weighted-average (TWA) asbestos concentrations for each worker at each facility are shown in Table 5-2. The TWA values reported are the sum of two sequential samples (morning and afternoon of the same day) averaged over the total time of the sampling periods (approximately 5 to 6 hours):

TWA = $(C_{an} \times T_{an} + C_{Dn} \times T_{Dn}) / (T_{an} + T_{Dn}); C = Concentration, T = Time.$

If one or both of the daily samples were overloaded with particulates so that the fibers could not be counted, the TWA exposures were not calculated. The normal workday consisted of one half-shift (morning) of preparation and one half-shift (afternoon) of removal activities. However, on 4 days (6/20, 6/26, 6/28, and 7/2) both shifts were spent in removal activities and on 4 other days (6/21, 7/3, 7/16, and 7/17) the crew only worked a half shift doing removal activities. As would be expected, the TWA concentrations appear to be somewhat higher on these days (except at Facility 1 on 6/21). Figure 5-1 illustrates the range of the TWA exposures, whereas Figure 5-2 illustrates exposures due to preparation and removal activities, separately.

Included in Table 5-2 are daily area sampling results calculated as a TWA in the same manner as the personal samples. The "Prox" samples were taken proximate to the work activity; the "Dist" samples were taken in the middle of the room at a distance from the work activity. The average concentrations of the personal samples and both types of area samples on any given day are not statistically different (at the 5% significance level), although the actual personal sample measurements are usually somewhat higher.

The upper confidence limits for the PBZ samples were below the 2.0 f/cc $(2,000,000 \text{ f/m}^3)$ OSHA PEL in effect at the time of this study. However, only exposures which occurred in Facility 4 were below the current PEL of 0.2 f/cc $(200,000 \text{ f/m}^3)$. The average TWA exposure over the 3 or 4 days worked in each facility are shown in Table 5-3. Of the 45 daily TWA exposures, 3 (7%) were in excess of 626,000 f/m³, 17 (38%) were in excess of 313,000 f/m³, and 27 (60%) were in excess of 200,000 f/m³; only 13 (29%) were less than 100,000 f/m³.

Table 5-4 shows the average fiber concentrations, as analyzed by PCM, for each room during the preparation activities. These concentrations averaged about 20,000 f/m^3 . As shown in Table 5-5, fiber concentrations during removal

Date/		Concentration (f/m ³)		Date/		Concentration (f/m ³)				
Activity	Worker	TUA*	Prox+	Dist f	Activity	Vorker	TLIK*	Prox+	Dist#	
	Fi	cility 1			Facility 2					
6/18	A	250,000			6/25	A	30,000			
Half Shift		-			Half Shift		340,000			
		210 000			Preparation Helf chift	C	220,000			
Bernal		270,000	100 000	220 000	Renoral	- U	200,000	270 000	310 000	
		<i>L.</i> ,	170,000	220,000		~~*	200,000	210,000	510,000	
6/19	•	300,000			6/26		-			
Half Shift		100,000			Full Shift		350,000			
Preparation	C	250,000			Removal	C	-			
Half Shift	D	320,000				0	290,000			
Removal	Avg	240,000	240,000	240,000		Avg	320,000	140,000	170,000	
6/20		470.000			6/77		-			
Full Shift		330,000			Half Shift		-			
Removal	c i	490,000			Preparation	Ìċ	310,000			
	D	310,000			Half Shift	D				
	Avg	400,000	270,000	260,000	Removal	Avg	310,000	200,000	•	
4/21		170 000			6/28		250 000			
Half Shift		120,000			Full Shift		200,000			
Renoval		120,000			Renoval	Ē	350.000			
	Ď	150,000				Ď				
	Avg	140,000	110,000	110,000		Avg	270,000	170,000	180,000	
	Fi	cility 3	L	•	Facility 4					
7/1		350 000		r	7/15		11 000		ſ	
Helf Shift		300,000			Half Shift		10.000			
Preparation	Ē	340,000			Preparation	Ē	3,000			
Half Shift	D	160,000			Half Shift	D	13,000			
Removal	Avg	290,000	230,000	220,000	Removal	Avg	9,000	7,000	8,000	
7/2		550.000			7/16		15.000			
Full Shift	Î.	560,000			Half Shift	Ê	13,000			
Removal	C	660,000			Removal	Ċ	-			
	D	640,000				Ď	-			
	Avg	600,000	620,000	630,000		Avg	14,000	13,000	32,000	
7/3		800 000			7/17		9 000			
Half Shift		410 000			Half Shift		5,000			
Removal	Ìč	480,000	}		tenoval	Ī	8,000			
	Ď	610,000				Ď	10,000			
	Avg	570,000	620,000	550,000		Avg	8,000	4,000	9,000	

TABLE 5-2. DAILY THA SAMPLES DURING ASBESTOS ABATEMENT

* Time-Weighted Average over actual working time = 4 to 6 hours.
+ Average of area samples taken proximate to removal operations.
Average of area samples taken in the room but at a distance from operations

FIGURE 5-1. TWA PERSONAL SAMPLES DURING ASBESTOS ABATEMENT

FIGURE 5-2. PERSONAL EXPOSURE DURING PREPARATION AND REMOV OF ASBESTOS-CONTAINING PIPE LAGGING

	Concent	cration (f/m ³)	Total	Number of Samples Naving Concentration (f/m ²) Greater Than					
Vorker	Average	Range	Samples	626,000	313,000	200,000	100,000		
Facility 1									
A	300,000	170,000 ~ 470,000	4	0	1	3	- 4		
₿ .	180,000	100,000 - 330,000	3	0	1	1	2		
C	290,000	120,000 - 490,000	3	0	1	2	3		
Ð	250,000	150,000 - 320,000	4	0	1	3	3		
Facility	260,000	100,000 - 490,000	14	0	4	9	12		
Facility 2									
Α	140,000	20,000 - 250,000	2	0	0	1	1		
B	290,000	200,000 - 350,000	3	0	Z	2	3		
C	300,000	220,000 - 350,000	3	0	1	3	3		
Ð	290,000	290,000	1	0	0	1	1		
Facility	260,000	20,000 - 350,000	9	0	3	7	8		
Facility 3									
A	560,000	350,000 - 800,000	3	1	3	3	3		
B	420,000	300,000 - 560,000	3	0	2	3	3		
C	490,000	340,000 - 660,000	3	1	3	3	3		
Ð	470,000	160,000 - 640,000	3	1	2	2	3		
Facility	490,000	160,000 - 800,000	12	3	10	11	12		
Facility 4	-								
A	12,000	9,000 - 15,000	3	0	0	0	0		
8	9,000	5,000 - 15,000	3	0	0	0	0		
C	6,000	3,000 - 8,000	2	0	0	0	0		
D	12,000	10,000 - 13,000	2	0	0	0	0		
Facility	10,000	3,000 - 15,000	10	0	0	0	0		
Overall									
Average Range Total	250,000	3,000 - 800,000	45	3	17	27	32		

TABLE 5-3. AVERAGE THA* PERSONAL SAMPLES DURING ASBESTOS ABATEMENT

* Time-Weighted Average over actual working time = 4 to 6 hours.

Facility/	Samples) Co	ncentration	(f/m ³)							
Location	Туре	Busber	Average	Mini s. M	Naxim,n							
1/Room A	Personal	4	33,000	26,000	37,000							
_	Personal - Short Ten	1	30,000									
	Area - Proximate	2	19,000	9,000	29,000							
	Area - Distant	2	13,000	9,000	17,000							
1/Room B	Personal	4	37,000	29,000	54,000							
	Personal - Short Ter	- 0	-	-	-							
	Area - Proximate	4	30,000	23,000	40,000							
	Area - Distant	2	20,000	-								
1/Room C was	1/Room C was prepared by a different work crew.											
2/Room 0	Personal	4	10,000	5,000	16,000							
	Personal - Short Ten	- 3	20,000	17,000	25,000							
	Area - Proximate	2	12,000	11,000	14,000							
	Arem - Distant	2	14,000	13,000	16,000							
2/Room E	Personal	4	30,000	22,000	54,000							
	Personal - Short Ter	= 4	39,000	33,000	45,000							
	Aren - Proximate	2	23,000	23,000	23,00 0							
	Area - Distant	2	16,000	12,000	19,000							
3/Room F	Personal	4	8,000	4,000	11,000							
	Personal - Short Ter	2	17,000	16,000	17,000							
	Area - Proximate	2	4,000	3,000	4,000							
	Area - Distant	2	6,000	4,000	8,000							
3/Room G Mas	s prepared by a differ	ent work (crew.		•••••							
4/Roam #+1	Personal	4	6,000	2,000	10,000							
4/Room I	Personal - Short Ter	n 4	9,000	2,000	16,000							
4/Room II	Area - Proximate	2	7,000	6,000	8,000							
4/Room II	Area - Distant	2	8,000	3,000	13,000							

TABLE 5-4. SUBWARY OF SAMPLING RESULTS DURING PREPARATION FOR PIPE LAGGING RENOVAL

4/Rocm J	4/Rocm 1	4/Roca H	3/Roam G	3/Rocm F	2/Rocm E	Z/Rocm D	1/Rocm C	1/Rocan B	1/Rocm A	Facility/ Location
Personal Personal - Short 1 Area - Proximate Area - Distant	Personal Personal - Short 1 Area - Proximate Area - Distant	Personal Personal - Short 1 Area - Proximate Area - Distant	Personal Personal - Short 1 Area - Proximate Area - Distant	Personal Personal - Short 1 Area - Proximate Area - Distant	Personal Personal - Short 1 Area - Proximate Area - Distant	Personal Personal - Short 1 Area - Proximate Area - Distant	Personal Personal - Short 1 Area - Proximate Area - Distant	Personal Personal - Short 1 Area - Proximate Area - Distant	Personal Personal - Short T Area - Proximate Area - Distant	Sumples Type
* * 0 6	¶ ∾→≁∾	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 4 8	6 6 6 6 6 6 6 6 6 6 6 7 6 7 6 7 8 7 8 7		- a 5 6	1 1 1	NNON	*****	liuber
6,000 6,000	32,000 32,000	7,000 7,000	670,000 2,660,000 710,000 670,000	470,000 450,000 440,000	277,000 170,000 180,000	80,00 00,00 00,00 00,00 00,00 00,00 00,00 00,00 0,000000	800,000 470,000 150,000	360,000 360,000 410,000	470,000 470,000	Average
1,000 1,000 2,000	13,000 16,000	5,6255 98888	280,000 620,000 570,000	260,000 20,000	8 8	0,8888 0,8888 88888 88888	120,000 140,000 90,000	310,000 380,000	340,000 360,000	Concentrat Nini m
7,000 11,000	900,000 51,000	8,000 8,000	9,290,000 960,000 820,000	1,030,000 2,440,000 940,000 560,000	1,930,000 330,000 340,000	2,920,000 590,000 770,000	1,120,000 230,000	400,000 410,000 440,000	1,190,000 1,190,000 590,000	ion (f/m ³) Naximum
8,000 12,000 3,000 4,000	77,000	9,000 9,000	340,000 2,830,000 120,000 150,000	230,000 640,000 350,000	130,000 120,000 120,000	170,000 180,000 250,000	150,000 50,000 60,000		160,000 220,000 160,000	SID

TABLE 5 6 4 ç 5 1 5 Ì AGGING **NADICA**

operations averaged about 350,000 f/m^3 and were an order-of-magnitude greater than exposures observed during preparation, except in Facility 4.

Results from the 15-minute, short-term samples are also shown in Tables 5-4 and 5-5. Of the 70 short-term samples reported in Table 5-5, 15 (21%) exceeded 1,000,000 f/m^3 . The highest exposure exceeded 9,000,000 f/m^3 . This occurred during the second day at Facility 3 when a 10-foot section of lagging suddenly separated from the pipe and fell into the poly envelope. A worker cut the envelope to reach in and push large pieces of lagging into the glove bag at the end of the envelope. Although this action was quickly curtailed and the envelope was resealed with tape, the personal exposures were undoubtedly elevated by this episode. Exposures would certainly have been even higher had the lagging fallen to the floor and shattered.

All of the above fiber concentrations were determined by PCM. In order to provide a comparison with TEM analyses, 16 PBZ samples collected on cellulose ester filters in Facility 1 were analyzed by both PCM and by TEM. These were selected to include two sequential daily samples for each worker and also to provide a variety of high to low concentrations as determined by PCM; the results are compared in Table 5-6. The TEM analyses reported for total asbestos structures indicate levels an order-of-magnitude higher than for the fibers reported when the same samples were analyzed by PCM. The sample collected on 6/18 for Worker B, erroneously reported to be <10D, was later found to be actually obscured by particulate so that the fibers could not be counted by PCM. Particulate did not obscure asbestos structures for the TEM analysis because of the greater power of resolution.

5.3.1.2. Area Samples--

As stated previously, the results of area samples analyzed by PCM indicated fiber concentrations of the same magnitude as the PBZ samples collected during removal; this is shown in Tables 5-2 and 5-5.

The fiber concentration measured by the area samples taken in the corridors adjacent to the poly-baffled door openings varied greatly in relation to the interior area samples (Appendix A, Tables 3A-1 through 4A-4). The frequency of entry and exit through the baffles should affect these sampling locations. In addition, activities including asbestos removal were taking place in other parts of the building. However, with one exception, all were lower (from 5% to 67%) than concentrations measured within the rooms during asbestos removal operations, indicating that the poly baffles were fairly effective in controlling the escape of airborne fibers released in the survey rooms. Twenty four of twenty eight ambient samples taken outside the buildings were below the LOD (1,000 to 2,000 f/m^3).

5.3.1.3. Discussion of Work Activity Exposure Results

Data shown in Tables 5-2 through 5-5 indicate that during the preparation (covering) of the pipe lagging workers were exposed to relatively low concentrations of airborne asbestos. In the rooms included in this survey, most of the pipe lagging was in good condition. In other situations, where lagging is deteriorated or damaged, it is quite probable that higher concentrations of airborne asbestos would be encountered during these operations.

				PCH Analysis			
Worker	Date	Activity	Structure Total	s (s/m ³) Asbestos	Fibers Total	(f/m ³) Asbestos	Fibers (f/m)
A	6/19 6/19 TUA	Preparation Removal	10,000 6,850,000 3,570,000	10,000 1,830,000 960,000	10,000 4,110,000 2,140,000	10,000 720,000 380,000	26,000 550,000 470,000
	6/21	Removal	3,750,000	1,910,000	2,100,000	560,000	170,000
В	6/18 6/18 Tua	Preparation Removal	370,000 4,920,000 3,040,000	250,000 3,600,000 2,220,000	290,000 2,040,000 1,320,000	180,000 1,020,000 670,000	29,000
	6/19 6/19 Tuia	Preparation Removal	0 4,370,000 3,130,000	0 2,170,000 1,550,000	0 2,560,000 1,830,000	0 550,000 400,000	37,000 120,000 100,000
	6/20 6/20 TWA	Removal Removal	3,360,000 4,540,000 4,000,000	1,840,000 2,340,000 2,110,00	2,310,000 2,480,000 2,400,000	890,000 570,000 710,000	360,000 300,000 330,000
C	6/20 6/20 TMA 6/21	Removal Removal Removal	6,550,000 5,670,000 6,070,000 3,780,000	2,900,000 4,040,000 3,520,000 2,270,000	4,530,000 3,310,000 3,860,000 2,460,000	1,320,000 1,890,000 1,630,000 1,210,000	550,000 430,000 490,000 120,000
D	6/18 6/18 TMA	Preparation Removal	1,270,000 5,080,000 3,510,000	50,000 2,870,000 1,710,000	1,140,000 3,340,000 2,430,000	10,000 1,220,000 720,000	54,000 320,000 210,000
	6/20 6/20 Tua	Removal Removal	4,250,000 4,140,000 4,190,000	2,590,000 2,110,000 2,330,000	2,050,000 2,660,000 2,370,000	660,000 930,000 800,000	320,000 290,000 310,000

TABLE 5-6. THA* CONCENTRATIONS CALCULATED FROM TEN AND PCN ANALYSES

* Time-Weighted Average over actual working time = 4 to 6 hours.

.

As described in Section 3.2.2.2., poor work practices were used by the workers at the beginning of the survey. The survey team attempted to instruct the workers in proper techniques the first week. During the second week, the workers were shown a training video, and proper techniques to be used in removing asbestos pipe lagging in glove bags were demonstrated by an instructor from the National Asbestos Council. The workers were observed to adopt many of the demonstrated techniques at the third facility, but the accident described above quite likely increased exposure levels. The high short-time exposure measured (greater than 9,000,000 f/m³) would take some time to dissipate in the sealed room, thereby increasing the TWA exposures. Removal at the last facility was observed to be performed by the application of most of the proper techniques demonstrated by the instructor most of the time.

Sampling results shown in Table 5-5 indicate that fiber concentrations were in the same range for Rooms A through F when lagging was being removed. Average personal exposures in Rooms A and F were about 400,000 f/m^3 during these activities; Room G exhibited the highest concentrations (average 850,000 f/m^3) which were probably caused by the accidental release. Rooms H, I, and J in Facility 4 were all well below 100,000 f/m^3 . Fiber concentrations in this facility were significantly lower (p = 0.05) than the other facilities.

Although factors such as a different type of lagging (e.g., lower asbestos content, less friable), improved cleanliness of the site before removal, etc., could have influenced the results, it was the opinion of the research team that these conditions were about equivalent in all of the facilities. The low exposure concentrations measured in Facility 4 may have occurred as result of changes in work practice that were observed during the removal of the pipe lagging. The present study did not permit a clear association between work practice and exposure level, however, due to the small number of sites that were studied.

5.3.2. Environmental Sampling

A comparison of pre- and post-removal sampling by both aggressive and nonaggressive procedures was made for two rooms in each of the four facilities. For each comparison, samples were taken using three 25 mm diameter cellulose ester filters, three 37 mm cellulose ester filters, and three 37 mm polycarbonate filters. The cellulose ester filters were analyzed using PCM; approximately 60% at UBTL and 40% in the NIOSH laboratory. About 15% of these samples were split and analyzed by both laboratories. The arithmetic mean of the NIOSH results was about 1.5 times that of the UBTL results, but this difference is not surprising in view of the interlaboratory CV of 0.45.

The post-removal samples were collected after the room had been cleaned, but before the visual inspection and final clearance sampling by the contractor. The results shown in Table 5-7 are the arithmetic means for the PCM samples broken down by location, sampling method, filter type, and pre- or post-removal status. A separate tabulation also groups the samples by facility. Much higher fiber concentrations were obtained by aggressive sampling than by nonaggressive sampling. Of 109 nonaggressive samples, 44 (48.6%) were at levels greater than 1,000 f/m³. Of the 111 aggressive samples, 97 (87.4%) were greater than 1,000 f/m³. The aggressive sampling data indicate that

		[lion	-Aggressi	ve Sam	pl ing	Aggressive Sampling						
ROOM	Sampling	25- 33 F	ilter	37- F	ilter	Avera	ge	25-m F	ilter	37-m F	ilter	Avera	ige
	Conditions	f/m ³	n	f/= ³	n	f/m	n	f/m ³	N	f/m	N	f/m ³	n
A	Pre-Removal Post-Removal	2,000 4,000	3 3	2,000 3,000	3 3	2,000 4,000	99	12,000 14,000	3 3	31,000 20,000	5 3	23,000 17,000	8 6
B	Pre-Removal	9,000	6	6,000	3	8,000	9	20,000	5	29,000	5	24,000	10
	Post-Removal	3,000	3	11,000	3	7,000	6	42,000	3	27,000	3	35,000	6
D	Pre-Removal Post-Removal	1,000 2,000	3 4	1,000 1,000	3 3	1,000 2,000	6 7	2,000 11,000	3 5	1,000 19,000	3 6	2,000 15,000	6 11
E	Pre-Removal	2,000	3	1,000	3	2,000	6	11,000	3	22,000	3	17,000	6
	Post-Removal	3,000	4	4,000	5	4,000	9	22,000	3	53,000	6	43,000	9
F	Pre-Removal	1,000	3	2,000	3	2,000	6	3,000	2	12,000	3	8,000	5
	Post-Removal	1,000	3	1,000	3	1,000	6	15,000	3	25,000	3	20,000	6
G	Pre-Removal	1,000	3	5,000	3	3,000	6	51,000	3	100,000	3	76,000	6
	Post-Removal	1,000	3	1,000	3	1,000	6	1,000	3	3,000	3	2,000	6
M	Pre-Removal	1,000	3	2,000	3	1,000	6	3,000	3	6,000	3	4,000	6
	Post-Removal	2,000	4	3,000	5	2,000	9	2,000	4	2,000	3	2,000	7
T	Pre-Removal	2,000	3	1,000	3	2,000	6	6,000	3	17,000	2	10,000	5
	Post-Removal	2,000	4	2,000	5	2,000	9	4,000	4	3,000	4	4,000	8
FACIL	TY												
1	Pre-Removal	7,000	9	4,000	6	6,000	15	17,000	8	30,000	10	24,000	18
	Post-Removal	3,000	7	7,000	6	5,000	12	28,000	6	24,000	6	26,000	12
2	Pre-Removal	2,000	6	1,000	6	1,000	12	7,000	6	12,000	6	9,000	12
	Post-Removal	3,000	8	3,000	8	3,000	16	15,000	8	36,000	12	28,000	20
3	Pre-Removal	1,000	6	4,000	6	2,000	12	10,000	5	56,000	6	45,000	11
	Post-Removal	1,000	6	1,000	6	1,000	12	8,000	6	14,000	6	11,000	12
4	Pre-Removal	2,000	6	2,000	6	2,000	12	5,000	6	10,000	5	7,000	11
	Post-Removal	2,000	8	3,000	10	2,000	18	3,000	8	3,000	7	3,000	15

TABLE 5-7. AVERAGE ASBESTOS CONTAMINATION IN ROOMS AND FACILITIES (PCM ANALYSES)

* This table shows average asbestos contamination in rooms and facilities by POH analysis using 25- and 37-mm filters applying both aggressive and nonaggressive sampling methods.

after initial cleaning, fiber contamination increased in Rooms D, E, and F as a result of the removal operations, but that Rooms G and I were less contaminated after cleaning.

Outdoor ambient asbestos concentrations were determined using two 25 mm diameter cellulose filters on each day of testing. Asbestos concentrations of two samples were 1,000 f/m^3 and the other 16 were less than the LOD.

TEM results are reported as structures per cubic centimeter (s/cc). Structures include fibers, bundles (compact arrangements of parallel fibers in which separate fibers or fibrils may be visible at the ends or edges of the bundle), clumps (networks of randomly oriented interlocking fibers arranged so that no fiber is isolated from the group), and matrices (one or more fibers attached to or embedded in a nonasbestos particle). The analyses indicate that most of the structures in this study were individual fibers. Total structures determined by TEM should be approximately comparable to fibers as determined by PCM if only fibers visible to PCM were collected on the filter. However, because there are no studies that the authors are aware of to demonstrate the comparability of TEM counts to PCM counts, the use of "structures" for TEM analyses and "fibers" for PCM analyses is used in the present study for clarity. In practice, there are normally many small fibers visible by TEM but not PCM, so that TEM counts are often much higher than the PCM counts.

The polycarbonate filters from the first two facilities were analyzed by TEM in the NIOSH laboratory. Samples collected in Facilities 3 and 4 were originally analyzed in another laboratory using an older electron microscope and, in most cases, the presence of asbestos structures was not identified. A few of these samples were reanalyzed in the NIOSH laboratory and asbestos structure concentrations comparable to those in Facilities 1 and 2 were found. Although it would have been desirable to have all of the samples analyzed in the NIOSH laboratory, only the aggressive sampling filters collected in Facilities 3 and 4 were reanalyzed because of limits on time and resources.

Table 5-8 shows the arithmetic mean of the analytical results for total structures, asbestos structures, total fibers, and asbestos fibers reported for pre- and post-removal, aggressive, and nonaggressive sampling. The average fiber concentrations by PCM (from Table 5-7) are also included in Table 5-8 for ease of comparison. The averages of the asbestos structure analyses are plotted graphically in Figure 5-3.

Figure 5-4 is a graphic comparison of total fibers by PCM and TEM. The TEM counts for nonaggressive sampling are one to two orders of magnitude greater than the PCM counts and about one order of magnitude greater for aggressive sampling. Because the PCM analyses do not discriminate between asbestos and nonasbestos fibers, PCM results are compared to the total fiber concentrations identified by TEM. It is important to note, however, that using Method $7400B^{[14]}$ only fibers greater than ca. 0.25 in diameter and 5 μ m in length with a 5:1 aspect ratio were counted, whereas the TEM total fiber counts include all fibers having a minimum length of 0.5 μ m and an aspect ratio of 5:1.^[19] The relationship between TEM and PCM analytical results clearly needs better definition; however, it is beyond the scope of the present study.

			Non-Agg	ressive S	mpling		Π	Aggressive Sampling					
ROOM	Sampling	TEN Str	uçtures	PCH	TEN FI	bers	Н	TEN Str	uçtures	PCH	TEN Fi	bers	
	Conditions	(s/	/m~)	(f/m)	(f/#	·)	П	(8/	n _)	(f/∎`)	(†/1	¯} 	
		Total	Asbestos	Total	Total	Asbestos		Total	Asbestos	Iotal	Ιοται	Aspestos	
	Pre-Removal	290,000	90,000	2,000	280,000	80,000	П	900,000	140,000	23,000	850,000	130,000	
	Post-Removal	240,000	70,000	4,000	180,000	60,000	П	610,000	250,000	17,000	530,000	210,000	
	Dee Bernen	70 000	70.000		40.000	50.000	П	750 000	100 000	24 000	710 000	150 000	
•	Post-Removal	370 000	230,000	7 000	50,000	220,000	П	840,000	560,000	35,000	610,000	410,000	
							П						
D	Pre-Removal	310,000	110,000	1,000	290,000	100,000	П	140,000	50,000	2,000	140,000	50,000	
	Post-Removal	920,000	350,000	2,000	870,000	330,000	П	1,710,000	.560,000	15,000	1,540,000	500,000	
ε	Pre-Removal	90,000	60,000	2.000	80,000	50,000	11	1,130,000	180,000	17,000	1,050,000	170,000	
	Post-Removal	320,000	170,000	4,000	280,000	140,000		1,820,000	210,000	43,000	1,450,000	130,000	
	Dag - Daga - 1			2 000			П	270 000	40.000	• 000	200 000	/0 000	
F	Pre-kenoval Post-Renoval			1 000			11	250,000	100,000	20,000	230,000	80,000	
				.,					,			,	
G	Pre-Removal			3,000			11	440,000	200,000	76,000	310,000	120,000	
	Post-Removal			1,000			11	230,000	150,000	2,000	200,000	130,000	
N	Pre-Renoval			2.000			H	1,140,000	240.000	4.000	1.030.000	200,000	
	Post-Removal			3,000			11	280,000	70,000	2,000	240,000	60,000	
	D D 1						11	530 000	740 000		/	250 000	
1	Pre-Kemoval Post-Removal			2,000			Ш	1 130 000	90,000	4 000	910,000	70,000	
		 		2,000			Ш	1,150,000	70,000	4,000	710,000		
FACILI	TY												
1	Pre-Removal	180,000	80,000	6,000	170,000	70,000	П	630,000	170,000	24,000	580,000	140,000	
	POST-KENDVAL	300,000	150,000	5,000	270,000	140,000	11	700,000	360,000	ക,000	360,000	510,000	
z	Pre-Removal	200,000	90,000	1,000	190,000	70,000	Н	640,000	120,000	9,000	590,000	110,000	
	Post-Removal	620,000	260,000	3,000	570,000	230,000	11	1,760,000	280,000	28,000	1,490,000	220,000	
1	Bre-Renoval			2 000				740 000	130 000	45 000	260 000	80.000	
5	Post-Renoval			1.000			H	250.000	130,000	11.000	210,000	110,000	
4	Pre-Removal			2,000				830,000	270,000	7,000	710,000	200,000	
	POST-Removal	<u> </u>		2,000			\parallel	700,000	80,000	5,000	570,000	60,000	

TABLE 5-8. AVERAGE ASBESTOS CONTAMINATION BY ROOM AND FACILITY (TEM AMALYSES)

FIG 5-3. AVERAGE ASBESTOS STRUCTURES BY TEM ANALYSIS

NOTE: Using Method 7400B^[14] only fibers greater than about 0.25 μ m in diameter and 5 μ m in length with a 5:1 aspect ratio were counted, whereas the TEM total fiber counts include all fibers having a minimum length of 0.5 μ m and an aspect ratio of 5:1.^[11] The large difference in fiber concentrations are mainly due to the preponderance of small fibers not visible by PCM. An analysis of the TEM data was made to determine whether the asbestos levels increased as a result of removal operations. The following comparisons were made using analysis of variance (ANOVA) on the log-transformed data:

- a.) pre-removal asbestos nonaggressive structure and fiber counts were compared to post-removal counts,
- b.) pre-removal asbestos aggressive structure and fiber counts were compared to post-removal counts,
- c.) pre-removal aggressive and nonaggressive data were compared, and
- d.) post-removal aggressive and nonaggressive data were compared.

In addition, two comparisons were made on untransformed data:

- e.) the fraction of fibers that are asbestos in pre-removal samples were compared to that of post-removal samples, and
- f.) the fraction of structures that are asbestos in pre-removal samples were compared to that of post-removal samples.

(The fractions (%) of asbestos structures in the total structures and of asbestos fibers in the total fibers are shown in Table 5-9.)

The Summary of this analysis (Appendix D) is as follows:

In summary, a main question here is the effectiveness of glove bags in containing asbestos material during the removal process, the conclusion that the first two facilities show signs of additional asbestos after removal, whereas the fourth facility shows signs of decrease in such material allows the possibility that the removal crew did improve its removal techniques, so that the glove bag methods used in the fourth facility may have been more effective in containing the asbestos material. (Note that the analysis of PCM data in Table 5-7, comparing pre- and post-removal counts, indicated a similar possibility concerning the decrease in asbestos after removal.)

The present study does not provide enough replicates to specify whether particular work practices will reliably allow effective glove bag containment. The study does show that asbestos emissions can occur when glove bags are used during asbestos abatement and it is prudent to assume that emissions will occur, unless it is proven otherwise.

As noted previously, analysis by TEM methods specify that the dimensions and speciation of all structures be recorded. Using the post-removal aggressive sampling results, EPA researchers analyzed and prepared a graphical representation of the size distribution of the asbestos fibers. This distribution is shown in Figure 5-4. As seen, the large majority of fibers were less than 5 μ m in length.

OTHER OBSERVATIONS

5.4.1. Magiscan II

A number of samples collected from the first facility surveyed were analyzed using the Magiscan II[®] (M-II) system, Version 2.0, and compared with results obtained from the manual use of PCM. For samples obtained during removal operations, the mean concentration was 0.42 f/cc for M-II and 0.46 f/cc for PCM. The correlation coefficient of 43 duplicate samples was 0.91. For fiber concentrations in this range (0.1 to 1.0 f/cc), the M-II could be

		Non-Aggressi	ve Sampling	Aggressive Sampling					
RCON	Sampling Conditions	Asbestos Structures in Total Structures (per cent)	Asbestos Fibers in Total Fibers (per cent)	Asbestos Structures in Total Structures (per cent)	Asbestos Fibers in Total Fibers (per cent)				
٨	Pre-Removal Post-Removal	41.2 27.5	41.1 31.4	18.0 41.6	16.7 40.3				
B	Pre-Removal Post-Removal	87.8 64.5	88.0 63.3	50.8 65.8	46.8 67.0				
D	Pre-Removal Post-Removal	53.6 36.5	49.7 35.9	42.7 22.9	42.7 22.1				
E	Pre-Removal Post-Removal	63.0 53.6	61.8 50,1	22.8 15.5	26.0 12.6				
F	Pre-Removal Post-Removal			34.7 46.5	32.2 42.2				
6	Pre-Removal Post-Removal			54.4 70.7	49.1 68.6				
M	Pre-Removal Post-Removal		i	37.1 27.2	36.2 25.7				
I	Pre-Removal Post-Removal			53.5 21.3	48.6 17.3				
FACILI	T								
1	Pre-Removal Post-Removal	64.5 46.0	64.5 47.3	34.4 52.0	31.8 51.8				
2	Pre-Removal Post-Removal	58.3 45.1	55.7 43.0	32.7 19.2	33.3 17.3				
3	Pre-Removal Post-Removal			44.5 58.6	40.6 55.4				
4	Pre-Removal Post-Removal			45.3 24.3	42.4 21.5				

TABLE 5-9. AVERAGE PER CENT OF ASBESTOS IN STRUCTURES AND FIBERS

Figure 5-5. Cumulative Size Distribution of Asbestos Fibers Aggressive Sampling, TEM Analysis

considered as an alternate analytical procedure that would provide results comparable to the manual PCM counting method, but in less time and with less operator fatigue.

However, it was found that when fiber concentrations were in the range of 0.001 to 0.1 f/cc, as with the asbestos abatement preparation operations and clearance procedures, the duplication of results was very poor. The ratio of of M-II to PCM fiber concentrations of duplicate samples were quite variable, ranging from 2:1 to 30:1. The correlation coefficients between the results obtained by the two methods ranged from 0.11 to 0.25. Therefore, the M-II system, as used in this study, was not suitable for measuring these low airborne asbestos fiber concentrations. A subsequent Magiscan software release (Version 4.0) reportedly has improved capability to measure low fiber counts.

5.4.2. Engineering Controls

Disposalene[®], Profo[®], and Safe-T-Strip[®] glove bags were used during this study. Although the majority of the work was done with Disposalene bags, the study was not designed to measure differences in the fiber concentrations emitted from the glove bags of the various manufacturers. It should be noted that glove bag design and construction has evolved since the time of this study and many conveniences and refinements are incorporated in many glove bags currently available.

5.4.3. Work Practices

The survey team observed and intermittently videotaped the work practices of the removal crew. The distributor for Safe-T-Strip[®] glove bags, who is also a National Asbestos Council instructor, provided on-site training which was very helpful in reinforcing good work practices and techniques. The training was well received by the workers and they were observed to make use of the demonstrated techniques for the duration of the study.

A subjective evaluation of work practices was improvised, and these ratings are summarized in Appendix A, Tables A7-1 through A7-4. Although the work practices appeared to improve as the workers received training and gained experience, it was not possible to identify work practices which would clearly explain the improved containment achieved in the final study site.

Attempts to analyze FAM measurements and compare observed real-time fiber concentrations with specific work conditions and activities were also unsuccessful. The removal work is composed of many short-duration, repetitive tasks; however, the cycle of repetition is inconsistent. In addition, two or more workers performing different tasks simultaneously at different locations in the same room further confounded the situation by the possibility of increasing the background levels from multiple, unrelated sources.

5.4.4. Contractor and School Board Monitoring

The removal contractor's program for monitoring airborne exposure to asbestos during the removal operation consisted of supplying the shift foreman with one personal sampling pump. During the present study, no personal sampling was conducted by the foreman because the survey team monitored each of the workers. The school board also hired an independent consultant to monitor the asbestos abatement activities by observation and by air sampling. However, because abatement work was simultaneously in progress at four diverse sites, the monitoring consultant was unable to provide a level of observation sufficient to ensure full compliance with the work specifications at any one site.

5.4.5. Personal Protection

The removal workers wore disposable coveralls in the work area during removal activities. In addition, each worker was fit-tested for a half-face cartridge respirator equipped with high efficiency particulate air filters. These respirators were worn during all removal activities.

5.4.6. Safety Considerations

Work was performed over or around obstructions such as sinks, commodes, light fixtures, and other nonremovable structures. Safety hazards were typical of those associated with insecure footing while working on elevated platforms, ledges, and ladders, i.e., slips, falls, awkward working postures, etc. The use of razor knives and stapling guns also presented hazards to workers. Staples driven through the poly into the asbestos lagging presented a special risk of injury to the hands. Care was required when removing the poly from the lagging to avoid skin punctures and lacerations. The poly gloves in the bags provided no protection against this hazard and were not large enough to allow workers to wear additional hand protection.

6. CONCLUSIONS AND RECOMMENDATIONS

The following conclusions and recommendations are based on the fiber exposure data collected and on the observation of the work practices used in this study.

- 6.1. Efficacy of Glove Bag Containment
- As used in this study, glove bags did not completely contain airborne asbestos when pipe lagging was being removed.

Glove bags can be a useful engineering control to reduce worker exposure to asbestos during the removal of ACM. In the present investigation, however, workers' exposures to airborne asbestos were consistently below the OSHA PEL in only one of the four facilities surveyed. The study was not designed to demonstrate the effect of training on glove bag containment efficacy and it did not provide a basis to specify conditions under which adequate containment can be assured.

Based on these results, it is prudent to assume that glove bags will afford varying degrees of containment, depending on the specific configuration of the structure from which asbestos is to be removed and the manner in which the glove bags are used by the workers.

• Because of the uncertainty in controlling exposures during the use of glove bags, it is essential to provide a backup containment system (e.g., isolation, barriers, negative air) and respiratory protection for workers.

Worker training and experience are important components of a reliable system of control measures; however, even work performed by wellexperienced crews is subject to accidental releases. Emissions of this sort must be prevented from entering other portions of the building.

As discussed in Section 3, the lack of expertise demonstrated by the workers at the first survey is probably typical of other workers who use glove bags infrequently. Plant maintenance personnel, asbestos operations and maintenance personnel, and many asbestos removal contractors who use glove bags only occasionally could very likely encounter asbestos exposures similar to those observed in these surveys, due to incomplete containment.

It is also necessary to use personal protective equipment (e.g., disposable coveralls) and respiratory protection during <u>any</u> glove bag operation, because of the potential for undetected leakage of the glove bag and accidental rupture of the bag or seals. OSHA permits the use of high efficiency, air purifying respirators for work with asbestos;^[13] however, NIOSH recommends that type C positive pressure, supplied air

respiratory protection be used when occupational exposure may occur.^[41] Only NIOSH/MSHA-approved respirators should be used. When respirators are used, a written respirator program including a quantitative respirator fit testing program must also be instituted.

• In this study, exposures to asbestos exceeding the NIOSH REL did not occur when the rooms were being prepared for asbestos lagging removal.

The maximum exposure observed during the preparation of the rooms and covering of the pipes before actual removal was $54,000 \text{ f/m}^3$. Preexisting contamination by ACM, i.e., asbestos contamination present in areas to be abated before the abatement operations are started, is an important factor to consider in evaluating the potential for exposure. Both the amount and the state of the preexisting contamination and the magnitude of the disturbance created by the workers activities can influence the contribution of preexisting contamination to airborne asbestos concentrations.

The rooms evaluated in this study were selected because of the good condition of the pipe lagging and the absence of visible debris. The workers used respirators during removal operations, but did not use them during the preparation stage. It is more usual for abatement work to be performed in areas where damaged lagging and debris are present; under such conditions respiratory protection should always be used in preparing the work site.

- 6.2. Clearance Methodology
- For clearance testing, the aggressive sampling technique is more sensitive for detecting asbestos contamination than nonaggressive sampling techniques. Asbestos was found in all of the clearance samples that were collected using aggressive sampling techniques and analysis by TEM.

Where aggressive sampling and TEM analysis techniques were used, preexisting contamination was found in all of the rooms in which this study was conducted, even though these rooms were selected because of the absence of any visual contamination. Using these same sampling and analytical techniques, asbestos concentrations observed following the abatement activities but prior to final inspection were greater than the preexisting contamination levels in five of the eight rooms.

• PCM analysis is not reliable for clearance testing.

The AHERA regulation permits the use of PCM only until October 7, 1990.^[11] The PCM analysis of samples collected using nonaggressive sampling techniques indicated that over 50% of the samples had nondetectable fiber concentrations. Even when aggressive sampling techniques were used, PCM analysis could not always detect the presence of asbestos, even though fibers were observed on all samples analyzed by TEM. Based on these findings, PCM should not be considered as a reliable method for determining the absence of residual asbestos. Furthermore, the results obtained by PCM are very close to the limit of detection for this method, and therefore, the confidence limits are very broad. This makes comparison with a clearance standard difficult.

TEM analysis presents several advantages for the measurement of low concentrations of asbestos fibers. It has the ability to detect short and narrow fibers, identify the type of fiber, and is less affected by overloading of particulates which may obscure fibers when using PCM.

The interlaboratory variability observed for the TEM analysis and the fiber contamination found on the polycarbonate filter media indicate that additional standardization and quality assurance are required. Laboratory accreditation is needed to assure that uniform sample preparation techniques and counting methods are used. Inter and intralaboratory quality control tests are needed to determine coefficients of variability and a measure of the accuracy and ability to replicate results. This need was recognized by both the April 1986 EPA peer review^[35] and the Asbestos-Containing Materials in Schools regulation (October 1987).^[32] This regulation charged the National Institute of Standards and Technology (NIST) (formerly the National Bureau of Standards) with the responsibility for establishing a laboratory accreditation program. NIST projects that such a program will require 2 to 3 years for implementation to occur. Until such time as TEM laboratory accreditation is accomplished, meaningful quantitative comparisons between laboratories or with EPA standards are possible only with extensive interlaboratory replicate analysis and quality assurance programs. It is recommended that laboratories performing TEM analyses initiate with other laboratories an interim program for quantitative comparisons of samples.

• Magiscan II is suitable for fiber analysis when airborne asbestos concentrations are compared to occupational standards, i.e., concentrations in the 0.2 f/cc $(200,000 \text{ f/m}^3)$ range.

From the limited observations in this study, it appears that the use of PCM with the automatic counting and sizing of particles, e.g., Magiscan II[®], Version 2.0, is useful for the analysis of fibers when the concentration is above the present OSHA PEL of 0.2 f/cc (200,000 f/m³). This system can provide results comparable to manual PCM, but in less time and with less operator fatigue. The Magiscan II (Version 2.0) did not correlate well with the PCM analyses for fiber concentrations in the 0.01 f/cc (10,000 f/m³) range. Therefore, it is not appropriate for analysis of low fiber concentrations normally associated with ambient background or abatement clearance fiber concentrations. A modification of this system, Magiscan, Version 4.0, may have utility at these lower concentrations, but it was not evaluated in this study.

6.3. Monitoring and Recommended Work Practices for Glove Bag Use

Monitoring of airborne asbestos concentrations by the removal contractor and the building owner is necessary to verify the effective use of glove bags; frequent observation and supervision by an experienced overseer is necessary to assure that proper work practices are being used. Although conventional workplace sampling for airborne concentrations can provide only after-the-fact exposure information, it may indicate the need for better control on future jobs. A direct-reading instrument (FAM) may be useful to indicate large, accidental releases of fibers and help to minimize contamination by timely corrective actions.

In the absence of other reputed studies that quantify the effectiveness of specific work practices, the following recommendations are given based on good industrial hygiene practice:

- Pre-mist all lagging with amended water.
- Wrap all pipe with poly prior to the start of removal work.
- Use a bag properly designed for the task (i.e., specially designed bags for working around large values or fittings).
- Start with a clean, empty bag where the pipe interfaces with walls or ceiling. Special care must be used to avoid breaking the tape or adhesive seal; an empty or nearly empty bag is easier to manipulate.
- Cut preformed lagging blocks at the joints to minimize fiber generation.
- Use hoses on the amended water sprayers of sufficient length to facilitate wetting practices; spray frequently during the removal task to assure that freshly exposed materials are wetted.
- Use a HEPA-filtered vacuum device to contain fibers and to assist in collapsing the glove bag and tying it off prior to removal.
- Remove contaminated tools in an inverted glove for transfer to the next glove bag.
- Require documentation of specific training and experience for workers using glove bags.
- Use enclosures with decontamination showers and negative air on large jobs. On smaller jobs, at least seal off vents and wall or ceiling openings with poly and provide double-hung poly curtains at the doors.
- Clean up accumulated debris prior to removal; this will reduce the potential to disturb and resuspend accumulations of loose fibers.
- Stable elevated platforms and scaffolding must be provided where needed. Improvised platforms utilizing existing structures should be discouraged; worker safety should not be jeopardized by expediency.
- If the lagging is not fully wrapped with poly prior to removal, band the lagging with tape at the places where the glove bag is to be attached. This will provide a clean surface for affixing the tape that seals the glove bag, and prevent damage to the lagging when the sealing tape is removed.

- Test the effectiveness of the seals by pressure testing each bag installation (e.g., gently squeeze the bag to assure that the seal is tight).
- Periodically, use a smoke test to assure that correct installation procedures have been followed. Use a smoke tube inside the bag to fill the bag with smoke, then apply gentle pressure to the bag to observe that the seals are secure. The pressure applied should be consistent with the forces exerted on the bag during the removal of the pipe lagging.
- Care should be taken when metal bands, wires, or metal jacketing are encountered to avoid lacerations to the hands or to the glove bag; whenever possible, the sharp edges should be folded in and these items placed gently in the bottom of the bag.
- The accumulation of debris and water in the glove bag should not exceed the ability of the workers to safely manipulate the bag as needed. Bag loading practices should reflect good judgment and experience; heavily loaded bags create awkward and unsafe conditions. Where applicable, the bag may be supported by the use of a platform and/or slings.
- Use a HEPA filter vacuum to contain fibers during all bag opening procedures such as removal or moving.
- Seal the ends of the lagging with "wettable cloth" (plaster-impregnated fiberglass webbing) or equivalent encapsulant, when partial removal creates exposed ends.
- Use a direct-reading aerosol monitor, such as a FAM, to detect failures in control or containment so that on-the-spot corrections can be made.
- Decontaminate the work area thoroughly after the completion of the job. All contamination should be removed, whether it was caused by the removal task or has accumulated over time.
- Place barricades around working areas when outdoor work is performed. Removal of pipe lagging from salvaged or reclaimed pipe should be done in an enclosure or room with suitable controls to prevent the release of asbestos fibers to the environment.
- Crew size should be proper for the task; a minimum of two workers is recommended where heavily loaded bags are anticipated or elevated work is required. Where two or more removal operations are conducted in the same area, an auxiliary worker may be utilized to refill and pressurize the amended water sprayers, to assist in moving or adjusting the glove bags, and to perform other miscellaneous tasks.

6.4. Research Needs

There are several research efforts that may help to improve the containment of asbestos while using glove bags: evaluation of work practices for both reduction of emissions and ergonomic considerations; improvements for wetting the lagging before removal, such as using an injection technique to saturate the lagging; and use of glove bags in conjunction with local exhaust applied to the glove bag (negative pressure).

Several removal contractors use high volume HEPA-filtered vacuum systems that are truck-mounted and are connected to the containment area by means of flexible duct work. They are used to produce a negative or reduced pressure and frequent air changes within the sealed area, and/or local exhaust ventilation to the source of asbestos emissions when ACBM are being removed. They are also designed to remove airborne contamination and debris from the removal site or building and provide disposal techniques remote from abatement operation. These systems could offer better containment than conventional removal methods. A study of the efficacy of these systems, as compared to the use of conventional removal techniques, is recommended.

A further recommendation is an evaluation of exposures associated with the effects of age, use, and maintenance procedures on the efficiency of HEPA-filtered vacuum devices, because degradation in these devices could result in significant emissions of asbestos fibers.
7. REFERENCES

- Hollett, B., Caplan, P., Cooper, T., and Froehlich, P. In-Depth Survey Report: Control Technology for Asbestos Removal, June 4-July 11, 1985. DHHS, NIOSH Report 1987 (ECTB No. 147-19a). NTIS Publ. No. PB-88-163191
- Hollett, B., Caplan, P., Cooper, T., and Froehlich, P. In-Depth Survey Report: Control Technology for Asbestos Removal, June 4-July 10, 1985. DHHS, NIOSH Report 1987 (ECTB No. 147-19b). NTIS Publ. No. PB-88-162201
- Hollett, B., Caplan, P., Cooper, T., and Froehlich, P. In-Depth Survey Report: Control Technology for Asbestos Removal, June 4-July 9, 1985. DHHS, NIOSH Report 1987 (ECTB No. 147-19c). NTIS Publ. No. PB-88-189451
- Hollett, B., Caplan, P., Cooper, T., and Froehlich, P. In-Depth Survey Report: Control Technology for Asbestos Removal, June 4-July 18, 1985. DHHS, NIOSH Report 1987 (ECTB No. 147-19d). NTIS Publ. No. PB-88-162250
- 5. NIOSH. 1985. Project Protocol for Control Technology Assessment of Asbestos Removal Processes. August 1985. Unpublished.
- 6. USEPA. 1972. National Emission Standards for Hazardous Air Pollutants. 40CFR61 Subpart A & B. 38FR8826. April 6, 1973.
- 7. USEPA. 1972. The Clean Air Act. 42 U.S.C. 7412, 7601(a).
- 8. USEPA. 1982. Friable Asbestos-Containing Material in Schools: Identification and Notification Rule. 40CFR763. 47FR23360. May 27, 1982.
- 9. USEPA. 1983. U.S. Environmental Protection Agency. Guidance for Controlling Friable Asbestos-Containing Material in Buildings. Washington, DC. Office of Toxic Substances and Office of Pesticides and Toxic Substances, USEPA. EPA-560/5-83-002.
- USEPA. 1985. U.S. Environmental Protection Agency. Guidance for Controlling Friable Asbestos-Containing Material in Buildings. Washington, DC. Office of Toxic Substances and Office of Pesticides and Toxic Substances, USEPA. EPA-560/5-85-024.
- Public Law 99-519. Asbestos Hazard Emergency Response Act of 1986, Sec 2 Amendment to Toxic Substance Control Act, Title II-Asbestos Hazard Emergency Response. Signed October 22, 1986.
- USEPA. 1984. National Emission Standards for Hazardous Air Pollutants (NESHAPS) Asbestos Regulations. 40CFR61, Subpart M. 49FR13661. April 5, 1984.

- 13. USDOL, OSHA. 1986. Occupational Exposure to Asbestos, Tremolite, Anthophyllite, and Actinolite; Final Rules. 29CFR1910.1001 and 29CFR1926.58. 51FR22612 (June 20, 1986).
- 14. NIOSH. 1984. Method 7400. National Institute for Occupational Safety and Health. NIOSH Manual of Analytical Methods. Third Ed., Vol 2. Cincinnati, OH. U.S. Dept. of Health and Human Services. Public Health Service. Centers for Disease Control. National Institute for Occupational Safety and Health. DHHS (NIOSH) Publication No. 84-100. (February 15, 1984).
- 15. Ibid. Revision #1. (May 15, 1985).
- 16. Ibid. Revision #2. (August 15, 1987).
- 17. Ibid. Revision #3. (May 15, 1989).
- Baron, P. and Deye, G. 1990. Electrostatic Effects in Asbestos Sampling I: Experimental Measurements. American Industrial Hygiene Association Journal. 51(2):51-62.
- USEPA. 1977 (Rev. June 1978). U.S. Environmental Protection Agency. Electron Microscope Measurement of Airborne Asbestos Concentrations. Research Triangle Park, NC. Office of Research and Development, USEPA. EPA-600/2-77-178.
- 20. NIOSH. 1987. Method 7402. National Institute for Occupational Safety and Health. NIOSH Manual of Analytical Methods. Third Ed., Vol 2. March 1987 Revision. Cincinnati, OH. U.S. Dept. of Health and Human Services. Public Health Service. Centers for Disease Control. National Institute for Occupational Safety and Health. DHHS (NIOSH) Publication No. 84-100.
- 21. Ibid. Revision #2. (August 15, 1989).
- 22. Gandee, David P. 1983. Report of the Asbestos Detection Program for the Cincinnati Public School District, Cincinnati, OH. Unpublished.
- 23. NIOSH. 1984. NIOSH testimony to the U.S. Department of Labor: statement of the National Institute for Occupational Safety and Health. Presented at the public hearing on occupational exposure to asbestos, June 21, 1984. NIOSH policy statement. Cincinnati, OH. U.S. Dept. of Health and Human Services. Public health Service. Centers for Disease Control. National Institute for Occupational Safety and Health on the Occupational Safety and Health.
- 24. NIOSH. 1990. Testimony of the National Institute for Occupational Safety and Health on the Occupational Safety and Health Administration's Notice of Proposed Rulemaking on Occupational Exposure to Asbestos, Tremolite, Anthrophyllite, and Actinolite, May 9, 1990. NIOSH policy statement. Cincinnati, OH. U.S. Dept. of Health and Human Services. Public Health Service. Centers for Disease Control. National Institute for Occupational Safety and Health.

- 25. NIOSH. 1976. Criteria for a recommended standard: occupational exposure to asbestos. Cincinnati, OH. U.S. Dept. of Health and Human Services. Public health Service. Centers for Disease Control. National Institute for Occupational Safety and Health. DHHS (NIOSH) Publication No. 77-169.
- 26. NIOSH. 1980. Workplace exposure to asbestos: review and recommendations. NIOSH-OSHA Asbestos Work Group. Cincinnati, OH. U.S. Dept. of Health and Human Services. Public Health Service. Centers for Disease Control. National Institute for Occupational Safety and Health. DHHS (NIOSH) Publication No. 81-103.
- 27. USDOL, OSHA. 1983. OSHA Safety and Health Standards. 29CFR1910. General Industry, Section 1910.1001 Asbestos. OSHA 2006 Revised March 11,1983.
- 28. USDOL, OSHA. 1988. Amendment to Occupational Exposure to Asbestos, Tremolite, Anthophyllite, and Actinolite; Final Rules. 29CFR1910.1001. 53FR35610 (September 14, 1988).
- 29. USEPA. 1987. Asbestos in Schools Rule. Worker protection rule, Subpart G Revised. 40CFR763. 52FR5618. February 25, 1987.
- 30. NIOSH. 1977. Method P&CAM 239. National Inst. for Occupational Safety and Health. NIOSH Manual of Analytical Methods. Second Ed., Vol 1. Cincinnati, OH. U.S. Dept. of Health Education and Welfare. DHEW (NIOSH) Publication No. 77-157-A.
- 31. Chatfield, E. J. 1983. Measurement of Asbestos Fibre Concentrations in Ambient Atmospheres. Ontario, Canada. Ontario Research Foundation.
- 32. USEPA. 1987. Asbestos-Containing Materials in Schools Final Rule and Notice. 40CFR763. 52FR210/41826. October 30, 1987.
- 33. USEPA. 1985. Measuring Airborne Asbestos Following an Abatement Action. Research Triangle Park, NC. Environmental Monitoring Systems Laboratory. Washington, DC. Office of Pesticides and Toxic Substances. EPA-600/4-85-049. November 1985.
- 34. Wilmoth, Roger C. Memo to Hugh Spitzer, Office of Regulatory Support and Scientific Analysis, EPA. Technical Review of Draft of AHERA Regulations. Water Engineering Research Laboratory, ORD, EPA. October 9, 1987.
- 35. Power, Thomas J. 1986. Filter Blank Contamination in Asbestos Abatement Monitoring Procedures: Proceedings of a Peer Review Workshop. USEPA Water Engineering Research Laboratory. Cincinnati, OH. Contract No. 68-03-3264.
- 36. Steel, Eric B. and Small, John A. 1985. Accuracy of Transmission Electron Microscopy for the Analysis of Asbestos in Ambient Environments. Analytical Chemistry. 57, 209-213. January 1, 1985.

- 37. Power, Thomas J. and Cain, William. 1987. Results of Air Sampling from Selected Asbestos Abatement Projects. Presented at the Third Annual NAC Fall Technical Conference and Exposition. Oakland, CA. September 22, 1987.
- 38. The Glove Bag Technique for Asbestos Removal of Pipe Covering using Safe-T-Strip Glove Bags. Instructor Graham Dewar. Asbeguard Equipment Inc.
- 39. Nash, Kenneth, V. Pres., W. W. Nash & Sons, Inc. Richmond, VA 23220.
- 40. Burdett, Garry J. and Rood, Anthony P. 1983. Membrane-Filter, Direct-Transfer Technique for the Analysis of Asbestos Fibers or Other Inorganic Particles by Transmission Electron Microscopy. American Chemical Society, Environmental Science and Technology. 17-11:643-649.
- USEPA/NIOSH. 1986. A Guide to Respiratory Protection for the Asbestos Abatement Industry. Washington, DC. Office of Pesticides and Toxic Substances Asbestos Action Program. USEPA. EPA-560-OPTS-86-001. April 1986.

APPENDIX A

SUMMARY TABLES FROM REPORTS OF INDIVIDUAL FACILITIES

TABLE A1-1 PERSONAL EXPOSURE MEASUREMENTS DURING PREPARATION AND REMOVAL OF PIPE LAGGING AT FACILITY 1

Exposure is reported as f/cc using NIOSH 7400-B Method

<u>WORKER</u>	<u>TYPE</u> *	ACTIVITY	<u>JUNE 18</u>	<u>JUNE 19</u>	JUNE 20	<u>JUNE 21</u>
# A	TWA		0.25	0.30	0.47	0.17
	ST	REMOVAL			0.38	
	ST	REMOVAL			0.77	
	ST	REMOVAL			1.10	
# B	TWA		**	0.10	0.33	0.12
	ST	PREPARATION		0.03		
	ST	REMOVAL.		1.00	0.52	0.34
	ST	REMOVAL			0.14	
# C	TVA		**	0.25	0.49	0.12
	ST	REMOVAL				0.43
	ST	REMOVAL				0.07
# D	TWA		0.21	0.32	0.31	0.15
	ST	PREPARATION		0.03		
	ST	REMOVAL		0.71	1.10	0.25
	ST	REMOVAL		0.92	1.20	
	ST	REMOVAL		0.95		

TWA - Sequential, full-shift Time-Weighted-Average
 ST - 15 Minute Short-Term

** In the report for this facility, values of 0.014 and 0.015 for workers B and C respectively are shown. However, subsequent investigation has indicated that values of "below detectable limit" reported by the analytical service should have stated that samples were obscured by too many particulates to be counted.

TABLE A1-2 PERSONAL EXPOSURE MEASUREMENTS DURING PREPARATION AND REMOVAL OF PIPE LAGGING AT FACILITY 2

<u>VORKER</u>	<u>TYPE</u> *	ACTIVITY	JUNE 25	JUNE 26	<u>JUNE 27</u>	JUNE 28
# A	TWA		0.025	**	**	0.254
	ST	PREPARATION	0.017		0.045	
	ST	REMOVAL		0.188	0.956	0.178
	ST	REMOVAL	1.33	0.667		0.333
# B	TWA		0.339	0.348	**	0.198
	ст	DEEDADATION	0 017		0.044	
	SI St	DEMOVAL	1 29	0 296		0 233
	ST	REMOVAL	0.91	0.756		0.233
# C	TWA		0.224	**	0.312	0.350
	ST	PREPARATION	0 025		0 033	
	ST	REMOVAL.	0 711	0 457	0.867	0 233
	ST	REMOVAL	••••	0.222	0.007	0.688
# D	TWA		**	0.290	**	**
	ST	PREPARATION			0.033	
	ST	REMOVAL	2.91	0.244	0.521	1.93
		REMOVAL		0.250		

Exposure is reported as f/cc using NIOSH 7400-B Method (PCM)

TWA = Time-Weighted-Averages for Preparation and Removal Work
 ST = 15 Minute Short-Term

** The TWA not reported. One of the sequential samples was overloaded with particulates.

***Not counted - sample overloaded with particulates.

TABLE A1-3 PERSONAL EXPOSURE MEASUREMENTS DURING PREPARATION AND REMOVAL OF PIPE LAGGING AT FACILITY 3

<u>WORKER</u>	<u>TYPE</u> *	ACTIVITY	JULY 01	<u>JULY 02</u>	JULY 03
# A	TWA		0.345	0.554	0.799
	ST ST ST	PREPARATION REMOVAL REMOVAL	0.016 1.0	0.156 2.0	0.167
# B	TWA		0.295	0.560	0.412
	ST	RENOVAL	0.711	0.756	
# C	TWA		0.343	0.663	0.475
	ST ST ST	PREPARATION REMOVAL REMOVAL	0.017 0.467 1.27	3.18 0.911	0.711
# D	TVA		0.161	0.639	0.611
	ST ST ST	REMOVAL REMOVAL REMOVAL	0.933	2.44 2.78 9.29**	0.622 1.02

Exposure is reported as f/cc using NIOSH 7400-B Method

* TWA = Sequential, full-shift Time-Weighted-Average ST = 15 Minute Short-Term

** The Short-Term sample reported was during an episode of high release. A 10-ft. section of lagging separated from the pipe inside the poly.

TABLE A1-4PERSONAL EXPOSURE MEASUREMENTS DURING PREPARATIONAND REMOVAL OF PIPE LAGGING AT FACILITY 4

<u>WORKER</u>	<u>type</u> *	ACTIVITY	<u>JULY 15</u>	JULY 16	<u>JULY 17</u>
# A	TWA		0.011	0.015	0.009
	ST	PREPARATION	0.015		
	ST	REMOVAL	0.022	0.016	0.016
	ST	REMOVAL			0.017
# B	TWA		0.010	0.013	0.005
	ST	PREPARATION	0.006		
	ST	REMOVAL	0.032	0.065	0.034
# C	TVA		0.003	**	0.008
	ST	PREPARATION	0.002		
	ST	REMOVAL	0.035	0.086	0.017
	ST	REMOVAL		0.20	0.016
# D	TWA		0.013	**	0.010
	ST	PREPARATION	0.016		
	ST	REMOVAL	0.036		0.044

Exposure is reported as f/cc using NIOSH 7400-B Method

ST - 15 Minute Short-Term

****** One of the filters was overloaded with particulates.

TABLE A2-1 PERSONAL SAMPLING RESULTS BY ACTIVITY AT FACILITY 1

PCH Analysis: f/cc using NIOSH 7400-B Method

<u>WORKER</u>	<u>_JUNE_18</u>	<u>JUNE 19</u>	<u>JUNE 20</u>	<u>JUNE 21</u>	MEAN	MIN	MAX	ST D*	n*
	ROOM B	ROOM A	ROOM B/	ROOM C					
		- PREPARA	TION FOR	PIPE LAGGIN	ig remov	AL			• •
A	0.032	0.026			0.029				
В	0.029	0.037			0.033				
C	0.032	0.029			0.030				
D	0.054	0.034			0.044				
PREP									
AVERAGE	0.037	0.032			0.034	0.026	0.054	0.009	8
			PIPE LAG	GING REMOVA	L				• =
	0 40				0 40				1
••	0.40	0.55	0 42		0.40				2
		0.35	0.53	0.17	0.35				2
AVG					0.414	0.17	0.55	0.135	5
R	**				0 003				1
-		0 12	0.36		0.005				2
		V.12	0.30	0.12	0.210				2
				-					
AVG					0.225	0.012	0.36	0.107	4
С	**				0.003				1
		0.45	0.55		0.500				2
			0.43	0.12	0.280				2
AVG					0.388	0.012	0.55	0.161	4
D	0.32				0.320				1
	V.JL	0 64	0 32		0.520				2
		0.04	0.32	0.15	0 220				2
			0.27	0.13	V.22V				-
AVG					0.344	0.15	0.64	0.161	5
REMOVAL.									
AVERAGE	0.36	0.44	0.40	0.14	0.347	0.012	0.64	0.160	18
AMBIENT	0.002	0.002	0.003	0.002	0.002	0.001	0.003	0.001	- 8
									• • •
	~ ~ 1			1 <i>P</i>					

* ST D = Standard Deviation n = number of samples

** In the report for this facility, values of 0.003 are shown. However, subsequent investigation has indicated that values of "below detectable limit" reported by the analytical service should have stated that the samples were obscured by too many particulates to be counted.

TABLE A2-2 PERSONAL SAMPLING RESULTS BY ACTIVITY AT FACILITY 2

PCM Analysis: f/cc using NIOSH 7400-B Method

WORKER	<u>JUNE 25</u>	<u>JUNE 26</u>	JUNE 27	<u>JUNE 28</u>	MEAN	MIN	MAX	ST D*	<u></u> *
	ROOM D	ROOM D	ROOM E	ROOM E	_				
		- PREPARA	TION FOR I	PIPE LAGGI	NG REMOV	/AL			
•	0 010		0 022		0 016				
R R	0.010		0.022		0.010				
B C	0.015		0.034		0.000				
D	0.005		0.022		0.015				
PDED	0.010		0.022		0.010				
AVERAGE	0.010		0.030		0.020	0.005	0.054	0.015	8
			PIPE LAGO	GING REMOV	AL				
A	0.043	0.161	**		0.102				2
		**		0 278	0 223				2
				0.169	0.225				L
AVG				0 223	0 163	0 043	0 278	0 083	4
•••				0.210	0.105	0.045	0.270	0.000	-
В	0.606	0.362	**		0.511				3
		0.315							
				0.060	0.145				2
				0.231					
AVG		0.339		0.145	0.315	0.060	0.606	0.178	5
С	0.522	0.216	0.475		0.404				3
		**	-						_
				0.323	0.388				2
				0.454					
AVG				0.389	0.398	0.216	0.522	0.112	5
D	**	0.287	**		0.292				2
		0.298			•••=				-
			0.354	0.354 **				1	
AVG		0.292			0.313	0.287	0.354	0.029	3
REMOVAL.									
AVERAGE	0.390	0.284	0.475	0.267	0.303	0.043	0.606	0.153	17
AMBIENT	0.001	0.001	0.001	0.001	0.001				- 8
* ST D	- Standar	d Deviatio	n n-r	number of s	samples				

** Filter Overloaded with Particulate - unable to count.

TABLE A2-3 PERSONAL SAMPLING RESULTS BY ACTIVITY AT FACILITY 3

PCM Analysis: f/cc using NIOSH 7400-B Method

WORKER	<u>JULY 01</u> ROOM F	JULY 02 ROOM G	JULY 03 ROOM G	<u>MEAN</u>	<u>MIN</u>	MAX	<u>ST_D*</u> _	<u>n*</u>
		PREPARATIO	N FOR PIPE LAG	GING REMOV	/AL			
A	0.011							
В	0.008							
С	0.004							
D	0.007							
PREP								
AVERAGE	0.008			0.008	0.004	0.011	0.003	4
		PI	PE LAGGING RED	IOVAL				• •
A	0.165	0.260	0.799					
	1.03	1.07						
AVG	0.563	0.554	0.799	0.665	0.165	1.07	0.382	5
В	0.40	0.263	0.412					
	0.50	1.410						
AVG	0.446	0.837	0.412	0.597	0.263	1.41	0.414	
С	0.505	0.457	0.475					
	0.619	1.10						
AVG	0.566	0.663	0.475	0.631	0.457	1.10	0.240	5
D	0.241	0.452	0.611					
	0.287	0.951						
AVG	0.265	0.639	0.611	0.508	0.241	0.951	0.257	5
REMOVAL								
AVERAGE	0.468	0.745	0.574	0.600	0.165	1.41	0.337	20
AMBIENT	0.001	0.001	0.001	0.001				6

* ST D = Standard Deviation n = number of samples

TABLE A2-4 PERSONAL SAMPLING RESULTS BY ACTIVITY AT FACILITY 4

PCM Analysis: f/cc using NIOSH 7400-B Method

WORKER	JULY 15	<u>JULY 16</u>	<u>_JULY 17</u>	MEAN	MIN	MAX S	<u>т D* _</u>	<u>n*</u>
	ROOM H	ROOM I	ROOM J					
		- PREPARATIO	N FOR PIPE LAGG	ing remov	'AL	. =		
A	0.005							
В	0.006							
С	0.002							
D	0.010							
PREP								
AVERAGE	0.006			0.006	0.002	0.010	0.003	4
		PI	PE LAGGING REMOV	VAL				
A	0.018	0.015	0.002					
			0.023					
AVG	0.018	0.015	0.012	0.015	0.002	0.023	0.008	4
В	0.015	0.013	0.005****					
AVG	0.015	0.013	0.005	0.011	0.005	0.015	0.004	3
С	0.005	**	0.004					
			0.017					
AVG	0.005		0.010	0.009	0.004	0.017	0.006	3
D	0.017	***	0.010****	0.014				
AVG	0.017		0.010	0.014	0.010	0.017	0.003	2
REMOVAL								
AVERAGE	0.014	0.014	0.010	0.012	0.002	0.023	0.012	12
AMBIENT	0.001	0.001	0.001	0.001				-
* S' ** F	T D - Stand ilter overl	ard Deviation oaded with pa	n = number (rticulate; unab)	of sample Le to cou	s nt.			

*** Worker not on job today. **** Only half shift sample; worker on another job first half of day.

		E 18	JUN	<u>E 19</u>					
	DCM	TEM	DOM N	а. А. • Трм					
SAMPI THE STTP	<u></u>				MIPAN	MTH	MAT	CT 04	
PCM ANALVELS		<u>as/tt</u>	1/55_	<u>as/cc</u>			<u> </u>	<u> 91 Pr</u>	<u>_11-</u>
NEAD UNDERDS	0 030				0 030	0 023	0 0/0	0 007	
	0.020		0 010		0.030	0.023	0.040	0.007	7
			0.017		0.017	0.007	V.V2)	0.014	~
AVERAGE					0.026	0.009	0.040	0.010	6
TEM ANALYSIS	(1	No Data)							
				0.590	0.590	0.540	0.640	0.069	2
AVERAGE				0.590	0.590	0.540	0.640	0.069	2
ROOM (BACKGROU	<u>ND)</u>								
PCH ANALYSIS	0.019				0.019	0.018	0.019	0.001	2
			0.013		0.013	0.009	0.017	0.005	2
AVERAGE					0.016	0.009	0.019	0.005	4
TEM ANALYSIS		0.870			0.870	0.574	1.200	0.410	2
				0.670	0.670	0.390	0.960	0.400	2
AVERAGE					0.780	0.390	1.200	0.370	4
									-
DOW ANALYCE	0 02.9				0 0/9	0 044	0 052	0 007	2
TCH ANALISIS	V. 040		0 070		0.040	0.044	0.000	0.007	2
			0.070		0.070	0.045	0.030	0.037	2
AVERAGE					0.059	0.043	0.096	0.025	4
TEM ANALYSIS		0.499			0.499	0.450	0.550	0.073	2
			•	0.650	0.650	0.645	0.655	0.006	2
AVERAGE					0.575	0.450	0.655	0.096	4
OUTDOOR AMBIEN	I 0 002								2
T ALL THAT PLATE			0_002						2

TABLE A3-1 AREA SAMPLING RESULTS PREPARATION FOR PIPE LAGGING REMOVAL AT FACILITY 1

A-10

ST D = Standard Deviation n = number of samples

٠

TABLE A3-2 AREA SAMPLING RESULTS PREPARATION FOR PIPE LAGGING REMOVAL AT FACILITY 2

Analysis: PCM using NIOSH 7400-B Method (f/cc)* TEM using EPA Provisional Method (as/cc)*

	JUNE	<u>25</u>	JUNE	27					
	PCM	u Tem	PCM	e Tem					
SAMPLING SITE	f/cc		f/cc		MEAN	MIN	MAX	<u>ST D*</u>	<u>_n*</u>
PCM ANALYSIS	0.013				0.012	0.011	0.014	0.002	2
			0.023		0.023	0.023	0.023	0.000	2
AVERAGE					0.018	0.011	0.023	0.005	4
TEM ANALYSIS				1.633	1.633	1.215	2.051	0.418	2
AVERAGE					1.633	1.215 	2.051	0.418	2
ROOM (BACKGROU	ND)								
PCM ANALYSIS	0.015				0.014	0.013	0.016	0.002	2
			0.016		0.015	0.012	0.019	0.005	2
AVERAGE					0.015	0.012	0.019	0.003	4
TEM ANALYSIS		0.370			0.370	0.350	0.390	0.020	2
				1.269	1.269	1.210	1.328	0.059	2
AVERAGE					0.820	0.350	1.328	0.451	4
HALL (BACKGROU	ND)				+				
PCM ANALYSIS	0.007				0.007	0.006	800.0	0.001	2
			0.045		0.045	0.024	0.065	0.029	2
AVERAGE					0.026	0.006	0.065	0.024	4
TEM ANALYSIS		_							
		0.585		2 061	0.085	0.575	0.594	0.009	2
				2.001	2.001	1.390	<i>L.JLJ</i>	0.403	2
AVERAGE					1.323	0.575	2.525	0.807	4
OUTDOOR AMBIEN	I								
PCM ANALYSIS	0.001				0.001	0.001	0.001	0.000	2
			0.001		0.001	0.001	0.001	0.000	2
<pre>* f/cc = fiber ST D = Stand</pre>	s/cc ard Devi	as/cc = Lation	asbestos n = numb	structur per of sa	es/cc mples				

TABLE A3-3 AREA SAMPLING RESULTS PREPARATION FOR PIPE LAGGING REMOVAL AT FACILITY 3

Analysis: PCM using NIOSH 7400-B Method (f/cc)* TEM using EPA Provisional Method (as/cc)*

<u>AX ST D</u> ★ 004 0.000	<u>n</u> * 2
AX <u>ST D+</u> 004 0.000	_ <u>n</u> * 2
004 0.000	2
	2
	_
	-
	-
0.003	2
	-
009 0.003	2
	2
	09 0.003

Analysis:	PCM us: TEM us:	ing NIOSH ing EPA P	7400-B M rovisiona	ethod (1 Metho	(f/cc)* od (as/cc)*	
	JULY ROOM	15 H				
SAMPLING SITE	PCM f/cc	<u>TEN</u> as/cc	MEAN	MIN	MAX ST D	<u>* _n*</u>
NEAR WORKERS						
PCM ANALYSIS	0.008					
AVERAGE	0.007		0.006			2
(TEM ANALYSIS NOT	COMPLET	ED)				
PCM ANALYSIS	0 003					
I WI MWWIDIO	0.013					
AVERAGE	0.008		0.008	0.003	0.013	2
(TEM ANALYSIS NOT	COMPLET	ED)				
HALL (RACKGROUND)		****				
PCM ANALYSIS	0.001					
	0.001					
AVERAGE	0.001		0.001			2
(TEM ANALYSIS NOT	COMPLET	ED)				
CITTOOD AWRIENT					# = =	
PCM ANALYSIS	0.001		0.001			2
<pre>* f/cc = fibers, ST D = Standar</pre>	/cc as, rd Devia	/cc - ash tion n	estos str - number	uctures of samp	s/cc oles	

TABLE A3-4AREA SAMPLING RESULTS PREPARATION FOR PIPE LAGGING REMOVAL
AT FACILITY 4

TABLE AN-1 AREA SAMPLING RESULTS FIPE LAGGING REMOVAL AT FACILITY 1

Analysis: FCH using EIOSH 7400-B Method (f/cc)* TBM using EPA Provisional Method (as/cc)*

	JUNE 18			JUNE 19			JUNE 20				JUNE 21									
		100	MB			100	H A		ROC	MA	VIRCOM (C		ROO	MC					
SAMPLING SITE	PC	M	TP	1	FC	<u>M</u>		1		1		<u>M</u>	FC	1	12	<u>M</u>		<u>م</u> ر		
	<u>1/cc</u>	B *	<u>as/cc</u>		<u>[/cc</u>	<u>_</u>	<u>#\$/¢¢</u>	<u> </u>	<u>1/cc</u>		. <mark>₩/</mark> ₩	<u> </u>	<u>[/cc</u>	<u> </u>		<u> </u>	<u>HEAR</u>	MIN	<u>_MAX</u>	<u>ST D=</u>
BOM ANALYSTS	0 26	2															0.36	0 91	0 41	0 074
TON AMALIGIS	0 .30	-			0 47	2			0 35	2							0.41	0 29	0.49	0.036
						-			0.19	2			0.11	2			0,15	0.10	0.20	0.048
AVERAGE																	0.30	0.10	0.49	0.140
				-																
TEM AMALISIS			3.1	2			• •	-				_					3.1	1.7	4.3	2.0
							Z.4	Z			3.5	2			1 4	2	2.9	1.9	4.3	1.1
											1.4	4			1.4	-	1.3	V.70	1.9	U.4J
AVERAGE																	1.500	0.780	4.500	1.600
								* *												
PCM ANALYSIS	0.41	2															0.41	0.38	0.44	0.040
		-			0.47	2											0.47	0.34	0.59	0.140
									0.21	2										
									0.31	2			0.11	2			0.16	0.09	0.23	0.062
AVERAGE																	0.30	0.09	0.59	0.140
TEM ANALYSIS			2.1	2													2.1	2.0	2.1	0.06
				-			1.7	2			2.7	2					1.5	0.15	3.0	1.50
								_			1.1	2			0.94	2	1.0	0.84	1.1	0.11
AVERAGE																	17	0 16	3.0	0 71
AREA AVERAGE	0.39	4	2.6	4	0.47	4	2.0	4	0.27	8	2.1	8	0.11	4	1.17	2				
	****											* * *		* -						
FOM ANALYSIS	0.05	2															0.048	0.044	0.053	0.007
		-			0.07	2			0.13	2							0,100	0.043	0.140	0.042
						-			0.006	2			8,008	2			0.007	0.006	0.009	0.001
AVERAGE																	0,052	0.043	0,096	0,049
			05	2													0 50	0 45	0 55	0 07
			0.5	-			0.65	2			1.3	2					0.98	0.65	1.5	0.41
								-			0.51	2			0.26	2	0.39	0.23	0.62	0.17
AVERAGE																	0.63	0.23	1.50	0.375
CUTDOOR AMBIEN	11 0_002	2			0.002	2			0.003	2			0,002	2			0,002	0.001	0.003	0.001

*f/cc = fibers/cc as/cc = asbestos structures/cc ST D = Standard Deviation n = number of samples

TABLE A4-2 AREA SAMPLING RESULTS PIPE LAGGING REMOVAL AT FACILITY 2

Analysis: FCM using NIOSH 7400-B Method (f/cc)* TEM using EPA Provisional Method (as/cc)*

	JURE 25 BOOM D				JURE 26 ROCM D			JUNE 27 BOOM D			JUNE 28 ROOM E										
MPLING SITE	RC	.	TE	1	PC	H	TP	M	FQ	1	12	M	PCM	I	TE	1					
	1/cc		as/cc	p	f/cc	<u>n</u>	as/cc	D	f/cc	n	as/cc	n	f/cc	n	as/cc	D	MEAN	MIN	MAX	ST D*	n
<u>AR HORKERS</u> FCM ANALYSIS	0.52	2			0.15	4		_	0.38	2						_	0.30	0.09	0.58	0.17	8
													0.17	4			0.17	0.05	0.33	0.10	4
AVERAGE																	0.26	0.05	0.58	0.16	12
TEM ANALYSTS			2.53	2			1 17	2			2 37	2					2 02	0.83	3.76	1.00	6
				-			,	-			2.07	-			2.60	4	2.6	1.20	5.02	1.46	4
AVERAGE																	2.25	0.83	5.02	1.24	10
YOM (BACKISPOIL																					
FCH ANALYSIS	0.61	2			0.17	4			0.03	1							0.30	0.03	0.77	0.22	8
		_				•				-			0.18	4			0.18	0,09	0,34	0.10	4
AVERAGE																	0.26	0.03	0.77	0.20	12
TEM ANALYSIS			3.24	2			2.17	4			1.55	2					2.28	1.33	3.22	0.77	8
															2.93	4	2.93	1.20	4.51	1.27	4
AVERAGE																	2.49	1.20	4.51	1.01	12
IEA AVERAGE	0.57	4	2.88	4	0.16	8	1.83	6	0.27	3	1.96	4	0.18	8	2.76	8					
ALL CRACKGROUT																					
FCH ANALYSIS	0.35	2			0.13	4			0,01	2							0.16	0.01	0.43	0.16	8
													0.02	4			0.02	0.00	0.04	0.01	4
AVERAGE																	0.11	0.00	0.43	0.14	12
TEN ANALYSIS			1.56	2			2.27	4			1.03	2					1.78	0.60	2.51	0.65	8
															1.3	4	1.3	0.46	2.35	0.83	4
											:						1.62	0.46	2.51	0.75	12
FCH ANALYSIS	<u>I</u> 0.001	2			0.001	2			0.001	2			0.001	2			0.001	0.001	0.001	0.000	8

f/cc = fibers/cc as/cc = asbestos structures/cc n = number of samples ST D = Standard Deviation

	JULY_01				02		JUL	Y 03						
	PC	CH 7			00	G	-	100	MG	-				
SAMPLING SITE	PCH	<u> </u>	TEM	10	1	TEH	10		TEH	_				
REAR WORKERS	<u>[/cc</u>	<u>n*</u> &	s/ec n	1/55_	<u> </u>	es/cc B	f/cc	æ	. <u>88/65</u> _B	<u>IEA</u>		MAX	<u>st d</u>	<u>n</u>
PCH ANALYSIS	0.434	2												
	0.473	2		0.445	2 2		0.615	2						
AVERAGE	0.453	4		0.623	4		0.615	2		0.583	0.002	0.956	0.31	8
(TEM ANALYSIS NO	t compl	ETED)	2			4			2					8
BOOM (BACKGROUND	 1													
PCM AMALYSIS	0.423	2												
	0.443	2		0.467	2		0.546	2						
				0.789	2									
AVERAGE	0.436	4		0.628	4		0.546	2		0.546	0.258	0.816	0.19	8
(TEM AMALYSIS NO	T COMPL	ETED)	2			4			2					8
AREA AVERAGE	0.444	0		0.625	8		0.581	4		0.565	0.002	0,956	0.24	20
BALL (BACKGROUND	2													
FCM ANALYSIS	0.012	2		0.001	2		0.300	2						
				0.451	2									_
AVERAGE	0.012	2		0.226	4		0.300	2		0.155	0.001	0.458	0.23	8
(TEM AMALYSIS NO	T COMPL	ETED)	2			4			2					8
OUTDOOR AMBIENT FOM ARALYSIS	0.001	2		0.001	2		0.001	2		0.001				6

TABLE AN-3 AREA SAMPLING RESULTS FIFE LAGGING REMOVAL AT FACILITY 3

Analysis: PCM using HIOSE 7400-B Hethod (f/cc)* TRM using EPA Provisional Hethod (as/cc)*

* f/cc = fibers/cc as/cc = asbestos structures/cc n = number of samples ST D = Standard Deviation

TABLE A4-4 AREA SAMPLING RESULTS PIPE LAGGING REMOVAL AY PACILITY 4

Analysis: FCM using NIOSH 7400-B Method (f/cc)* TEM using EPA Provisional Method (as/cc)*

	JULY 15			JULY 18				JULY 17								
		ROOM	Ħ		ROOP	4 I			ROO	МJ						
SAMPLING SITE	RO	1	TEM	. PO	1	TEN	<u> </u>	PO		TE	<u>M</u>					
	f/cc	_n* s	s/cc B	f/cc	<u>_R</u>	as/cc	<u>n</u>	f/cc		as/cc	<u> </u>	MEAN	MIN	MAX	<u>ST D=</u>	<u> </u>
HEAR WORKERS																
PCM AMALYSIS	0.007	2		0.013	1**			0.003	2							
								0.006	2							
AVERAGE	0.007	2		0.013	1			0.004	4			0.006	0.001	0.013	0,004	7
(TEM ANALYSIS D	OT COMPI	ETED)							_							
BOOM (BACKGROUN	• • • • •						. –									
PCH AMALYSIS	0.007	2		0.032	2**	**		0.004	2							
								0.013	2							
AVERAGE	0.007	2		0.032	2			0.009	-4			0.012	0.002	0.051	0.016	5 6
(TEM ANALYSIS I	OT COMPI	LETED)														
AREA AVERAGE	0.007	4		0.026	3		-	0.006	6							-
																. =
HALL (BACKGROUN	D)															
PCH ANALYSIS	0.002	2		0.002	2			0.001	2							
								0.004	2							
AVERAGE	0.002	2		0.002	2			0.002	4			0.002	0.001	0.004	0.001	. 8
(TEM ARALYSIS N	OT COMP	LETED)														_
OUTDOOR AMBIENT																
PCM ANALYSIS	0.001	2		0.001	2			0.001	2			0.001				6
<pre>* f/cc = fibe</pre>	rs/cc	ns /cc	- asbest	os str		res/cc	n	- numbe). 	f samp	les :	ST D = S	tandar	i Deviat	ion.	

** The other filter sample of this pair was overloaded with particulates; unable to count.

*** One of the paired samples was overloaded with particulates; unable to count. However, a 20 min short term area sample which measured 0.051 f/cc was included in this average .

TABLE A5-1 MEAN ASBESTOS STRUCTURE AND ASBESTOS FIBER CONCENTRATIONS AT FACILITY 1

Sample	Structures/m ³	<u>Fibers/m</u> ³
Pre-Removal		
Nonaggressive	77,000	65,000
Aggressive	167,000	139,000
Post-Removal		
Nonaggressive	148,000	140,000
Aggressive	385,000	294,000
• • • • • • • • • • • • • • • • • • • •	******************	

۰.

:

Analysis by TEM using EPA Provisional Method

TABLE A5-2 MEAN ASBESTOS STRUCTURE AND ASBESTOS FIBER CONCENTRATIONS AT FACILITY 2

Analysis by TEM using EPA Provisional Method

Sample	Structures/m ³	<u>Fibers/m</u> ³
Pre-Removal		
Nonaggressive	85,700	73,800
Aggressive	119,000	113,000
Post-Removal		
Nonaggressive	260,000	232,000
Aggressive	283,000	217,000

-

-

TABLE A5-3 MEAN ASBESTOS STRUCTURE AND ASBESTOS FIBER CONCENTRATIONS AT FACILITY 3

Sample	<u>Structures/m</u> 3	<u>Fibers/m</u> ³
Pre Removal		
Nonaggressive	N/C	N/C
Aggressive	130,000	80,000
Post Removal		
Nonaggressive	N/C	N/C
Aggressive	130,000	110,000
N/C - Analysis not com	pleted.	

Analysis by TEM using EPA Provisional Method

TABLE A5-4 MEAN ASBESTOS STRUCTURE AND ASBESTOS FIBER CONCENTRATIONS AT FACILITY 4

Analysis by TEM using EPA Provisional Method

Sample	<u>Structures/m</u> ³	<u>Fibers/m</u> ³
Pre Removal		
Nonaggressive	N/C	N/C
Aggressive	270,000	200,000
Post Removal		
Nonaggressive	N/C	N/C
Aggressive	80,000	62,000

N/C - Analysis not completed.

TABLE AS-1 COMPARISON OF MEAN FRE- AND POST-REMOVAL AREA SAMPLING AT FACILITY 1

Analysis: FCM using WIOSH 7400-B Mathod (f/cc)* TEM using EPA Provisional Mathod (as/cc)*

1515**
3
3
3
3
•

* f/cc = fibers/cc as/cc = asbestos structures/cc n = number of samples

** Sample volumes are approximately 1,500 liters. The lower limit of detection (LOD) is 0.010 as/cc.

Analyses reported "below the LOD" are entered at half of the LOD = 0.005 as/cc.

*** These two samples were collected for a double shift; therefore, volumes = 3,000 liters.

TABLE A6-2 COMPARISON OF MEAN FRE- AND POST-REMOVAL AREA SAMPLING AT FACILITY 2

Analysis: FCM using NIOSH 7400-B Method (f/cc)* TEM using EPA Provisional Method (as/cc)*

		_ J U	<u>ne 12 pre-re</u>	MOVAL SA			JULY 11 POST-REMOVAL SAMPLES						
LOCATION	1058 <u>1/cc</u>	<u> </u>	AND TEM <u>as/cc</u> <u>b</u>	EPA 1 A Total 2	<u>TEM ARALYS</u> MS/CC >5 um lora	<u>n</u>	FIOSH 1/cc	<u>PCH</u> B	AND TEN as/cc n	EPA 1 ai Total 2	TEM ANALYS V/CC 5 um lorg	5 <u>15**</u>	
					GGRESSIVE	SAMPL	THE METHOD						
BOOM D	0.001	6		0.114	0,005	3	0.001	6		0.353	0.005	3	
ROOM E Outside Ball	0.002	6		0.056	0.005	3	0.002 0.002	6 2		0.166	0.005	3	
OUTDOOR AMBIENT			0.002 2***						0.002 2***				
				<u>AG</u>	GRESSIVE	SAMPLI	<u>ig method</u>						
ROCH D	0.002	6		0.054	0.005	3	800.0	6		0.356	0.038	3	
BOCH E	0.016	6		0.184	0.005	3	0.037	6		0.209	800.0	3	
OUTSIDE HALL							0.005	2					
OUTDOOR AMBIENT	0.001	2	0.002 2***				0.001	4	0.01 2***				

* f/cc = fibers/cc as/cc = asbestos structures/cc n = number of samples

** These sample volumes are approximately 1,500 liters. The lower limit of detection (LOD) is 0.010 as/cc. Analyses reported below the LOD are entered at half of the LOD = 0.005 as/cc.

*** These are 25-mm cellulose ester filter samples analyzed by MIOSH 7402 method, March, 1987 revision. The Lower Limit of Detection for a 2500 1 sample is about 0.002 as/cc. TABLE A6-3 COMPARISON OF MEAN PRE- AND POST-REMOVAL AREA SAMPLING AT FACILITY 3

Analysis: FCH using WIOSH 7400-B Method (f/cc)* TEH using EPA Provisional Method (as/cc)*

		JU	E 13 PRE-REM	OVAL SAM	PLES		JULY 10 POST-REMOVAL SAMPLES						
LOCATION	<u>11058</u>	<u>PQ</u>	AND TEM	EPA T • Total >	EM ANALYS s/cc 5 um long	<u>IS**</u>		PCM D	AND TEM as/ccn	EPA 1 a Total 2	TEM ANALYS us/cc 5 um long	<u>n</u>	
				TORAG	GRESSIVE :	SAMPLI	NG METHOD						
ROOM F	0.002	6	W/C	₩/C	H/C	3	0.001	6	∎/C	₩/C	N/C	3	
Boom g	0.003	6	W/C	N/C*	I/C	3	0.001	6	₩/C	₩/C	₩/C	3	
BALL BOOM F							0.001	2	II/C				
HALL ROOM G							0.001	2	₩/C				
				ACG	CESSIVE SA	MPLIN	<u>g method</u>						
ROOM F	0.008	5	¥/C	0.06	0.012	3	0.020	6	N/C	0.10	0.006	3	
Roch g	0.075	6	W/C	0.20	0.037	3	0.002	6	II/C	0.15	0.007	3	
HALL ROOM F							0.003	1	I/C				
HALL ROOM G							0.000	1	₩/C				
OUTDOOR AMBIENT	0.002	2	0.002 2***				0.000	2	0.002 2***	•			

* f/cc = fibers/cc as/cc = asbestos structures/cc n = number of samples

H/C - Analysis not completed

** These sample volumes are approximately 1,500 liters. The lower limit of detection (LCD) is

0.010 as/cc. Analyses reported below the LCD are entered at half of the LCD (0.005 as/cc).

*** These samples were collected on 25mm cellulose ester filters and analyzed by WIOSH Method 7402, March 1987 revision.

TABLE AG-4 COMPARISON OF MEAN PRE- AND POST-REMOVAL AREA SAMPLING AT FACILITY 4

Analysis: PCM using WIOSH 7400-B Method (f/cc)*; TEM using EPA Provisional Method (as/cc)*

		JUL	Y 12 PRE REP	DVAL SAM	PLES		J	ULY 18 POST	REMOVAL SA	MPLES	
LOCATION	<u>f/cc</u>	<u>n*</u>	AND TEM as/cc n	<u>EPA 1</u> a <u>Iotal</u> 2	TEM ANALYS us/cc 5 um long	<u>n</u>	NIOSH PC f/cc n	MAND TEM	EPA 1 A Total 2	TEM ANALYS Ma/cc 5 um long	<u>n</u>
				NONAG	GRESSIVE	SAMPLI	NG METHOD				
ROOM H	0.001	6	N/C	N/C	∎/C	3	0.001 6	N/C	N/C	N/C	3
ROOM I	0.002	6	N/C*	II/C	N/C	3	0.001 E	N/C	II/C	N/C	3
BALL ROOM H	0.001	1	N/C		-		0.001 1	N/C			
HALL ROOM I	0,001	1	N/C				0.003 1	N/C			
				AGG	RESSIVE SA	MPLIN	s <u>method</u>				
ROOM H	0.004	6	₩/C	0.24	0.012	3	0.002 6	N/C	0.07	0.007	3
ROOM I	0.010	6	W/C	0.30	0.014	3	0.003 E	ĭ II/C	0.09	0.021	3
BALL BOOM H	0.001	1	N/C				0.001 1	E/C			
BALL ROOM I	0.026	1	₩/C				0.000 1	M/C			
OUTDOOR AMBIENT	0.001	2	0.001 2***				0.001 2	0.001 2*	**		

f/cc = fibers/cc as/cc = asbestos structures/cc n = number of samples

F/C - Analysis not completed for these samples

** These sample volumes are approximately 1,500 liters. The TEM lower limit of detection (LOD) is 0.010 as/cc. Analyses reported below the LOD are entered at half of the LOD (0.005 as/cc).

*** These ambient samples were collected on 25mm cellulose ester filters and analyzed by NIOSE method 7402 March 1987 revision. The lower limit of detection for a 3000 1 sample is about 0.002 as/cc. None detected values are reported here at half the LOD.

TABLE A7-1 EVALUATION OF WORK PRACTICES AT FACILITY 1

Date Time Site	6/18/85 Am / Pm <u>_ ROOM B</u>	6/19/85 Am / Pm <u>ROOM A</u>	6/20/85 AM / PM <room< th=""><th>6/21/85 AM / PM 1 C></th></room<>	6/21/85 AM / PM 1 C>
TASK		WORK PRACT	CE RATING#	
Prepare Pipe	A / -	A / -	- / -	- / -
Install Bag	P / -	P / -	-/-	A / -
Wet Pipe Lagging	P / P	- / P	A / A	A/P
Remove Lagging (use of bag)	P/P	- / P	P/A	A / A
Nove Bag	- / P	- / P	P/A	G/A
Remove Bag	- / A	- / A	A / A	G / P
Clean Pipe	- / A	- / A	A / A	A/A
Decontaminate Room	- / A	- / -	A / A	A/A
Number of Bags Used	(5)	(12) (13)
# SUBJECTIVE RATING VALUES:	P = POOR	A – AVERAGE	G = GOOD	*******

TABLE A7-2 EVALUATION OF WORK PRACTICES AT FACILITY 2

Date Time Site	6/25/85 Am / Pm <r(< th=""><th>6/26/85 Am / Pm Dom D></th><th>6/27/85 AM / PM <roo< th=""><th>6/28/85 AM / PM M E></th></roo<></th></r(<>	6/26/85 Am / Pm Dom D>	6/27/85 AM / PM <roo< th=""><th>6/28/85 AM / PM M E></th></roo<>	6/28/85 AM / PM M E>						
TASK	WORK PRACTICE RATING#									
Prepare Pipe	G / -	- / -	- / A	- / -						
Install Bag	A / -	A / -	- / G	G / -						
Wet Pipe Lagging	- / A	A / A	A / -	A / A						
Remove Lagging (use of bag)	- / A	ΑΑ	Α/-	A/G						
Move Bag	- / A	A / A	Α/-	A/G						
Remove Bag	- / A	G / G	G / -	A/G						
Clean Pipe	- / A	A / A	Α/-	A / A						
Decontaminate Room	- / G	- / G	- / -	- / G						
Number of Bags Removed	0/3	4 / 2	7 / 0	4/0						
# SUBJECTIVE RATING VALUES:	P - POOR	A – AVERAGE	G – GOOD)						

TABLE A7-3 EVALUATION OF WORK PRACTICES AT FACILITY 3

Date	7/1/85	7/2/85	7/3/85
Time	AM / PM	AM / PM	AM / PM
Site	<room< th=""><th><u>F>/<r< u=""></r<></u></th><th>00M G></th></room<>	<u>F>/<r< u=""></r<></u>	00M G>
TASK	WORK	PRACTICE RA	TING#
Prepare Pipe	A / -	- / -	- / -
Install Bag	G / -	A / -	A/G
Wet Pipe Lagging	- / A	A / A	A / -
Remove Lagging (use of bag)	- / A	A / A	G / -
Nove Bag	- / G	- / G	G / A
Remove Bag	- / A	G / A	A / -
Clean Pipe	- / A	GĊG	A / -
Decontaminate Room	- / A	G / G	G / -
Number of Bags Removed	0/3	6 / 3	3/0
# SUBJECTIVE RATING VALUES: 1	P = POOR	A - AVERAGE	G = GOOD

TABLE A7-4 EVALUATION OF WORK PRACTICES AT FACILITY 4

Date Time Site	7/15/85 AM / PM	7/16/85 AM / PM BOOM T	7/17/85 AM / PM ROOM I
TASK	WORK	PRACTICE RA	<u>KOOM J</u>
Prepare Pipe	A / -	- / -	- / -
Install Bag	G / -	- / -	-/-
Wet Pipe Lagging	A / A	A / -	G / G
Remove Lagging (use of bag)	G / A	A / -	A / A
Move Bag	GŻG	A / -	G / A
Remove Bag	GÍG	G / -	A / A
Clean Pipe	G / G	A / -	G / G
Decontaminate Room	- / G	A / -	- / G
Number of Bags Removed	(6)	(6)	(8)
# SUBJECTIVE RATING VALUES:	P = POOR	A – AVERAGE	G = GOOD

-

APPENDIX B

TABULATION OF DATA OBTAINED USING

PHASE CONTRAST MICROSCOPY (PCM)

AND MAGISCAN II

TABLE B1-1

LEGEND FOR FACILITY 1 PCM DATA

LOC (Facil	ity and room location of sampled activity)
1 <u>xxx</u>	Facility 1
RMA	Room A
RMB	Room B
RMC	Room C
RM9	Room 109
TLC	Teachers Lounge
FB	Field Blank no sample taken
SAMPLE CLASS	(Sample type and location, activity, and ID)
<u>Location</u>	
FB	Field Blank
IA	Interior Area (Background in the work room)
OA	Outside Area (in the hall)
MA	Ambient (Outside the building)
BZ	Personal Breathing Zone
CT	Mobile Sampling Cart (proximate to the work activity)
<u>Activity</u>	
PRE	Pre-removal activity - Full term sample
PST	Post-removal activity - Full term sample
REM	Removal work - Full term sequential sample
COV	Preparation - Full term sequential
RMS	Removal work - 15 minute short term PBZ sample
COS	Preparation - 15 minute short term PBZ
SEQ	Sample period covers sequential work activities
<u>1D</u>	
AGGR	Aggressive sampling mode
NAGR	Nonaggressive sampling mode
WK# <u>X</u>	Worker #X PBZ sample
<u>pm/dd</u>	Actual date of blank source
SAMPLE No.	Sample media Identification code and number
AA <u>xxx</u>	25-mm Cellulose Ester Filter Sample Number xxx (using a
	foil wrapped 2-inch cowl)
M <u>xxx</u>	37-mm Cellulose Ester Filter Sample Number xxx
N <u>xxx</u>	37-mm Polycarbonate Filter Sample Number xxx
PATE	Sample flow rate in liters per minute (lom)
VOI.	Sample liter in liters (1)
MAGISCAN II	Magiscan II is a computerized image analysis system for
	PCM; results are in total fibers per cubic centimeter
Phase Contrast	<u>Microscopy using NIOSH Method 7400B counting rules</u>
UBTL	PCM analysis performed by Utah Biological Testing Labs
NIOSH	PCM analysis performed in the NIOSH Laboratory
Fibers	Total fibers
f/cc	Fibers per cubic centimeter

1

PHASE CONTRAST MICROSCOPY ANALYTICAL RESULTS FOR AIRBORNE ASBESTOS AMALTSIS FACILITY 1

CINCINNATI, OHIO June 14, 18 - 21 & July 9, 1985

NOTE:	For samples one half of	report the 1	ted less than imit of detect	detectable, tion is used
	as follows:	LAB	25-mm Filter	37-mm Filter
		UBTL	750	1750
		TIOSH	1347	2002

		June	14, 14	B - 21	f July	9, 19	85				NIOSE	1347	299	2	
									W. 6766.W			_			
				PER	IOU TIME BATE		BATE	<u>VOL.</u>	HIGISCAN II		UB1		NIO	Sti	
<u>IOC.</u>	SAMPLE CLASS	<u> </u>	<u>Date</u>	<u>Start</u>	Stop	<u>(min)</u>		<u>_(l)</u> _	<u>Fibers</u>	<u>I/cc</u>	<u>Fibers</u>	<u>I/cc</u>	Fibers	I/cc	
1 RHB	IA-PRE-AGGR	AA 79	6/14	1611	0211	480	3.25	1560.0	70070	0.045		0.000			
1748	IA-PRE-AGGR	AA8 0	6/14	1811	0211	480	3.20	1536.0	66990	0.044	23000	0.015			
1RHB	IA-FRE-AGGR	AA90	6/14	1811	0211	480	3.25	1560.0	74690	0.048	26000	0.017	25795	0.017	
1846	IA-PRE-AGGR	M332	6/14	1811	0211	480	3.25	1560.0	101745	0,065	30000	0.019	88065	0.056	
1848	IA-PRE-AGGR	M334	6/14	1811	0211	480	3.25	1560.0	71820	0.046	35000	0.022			
1848	IA-PRE-AGGR	M340	6/14	1811	0211	480	3.20	1536.0	112005	0.073	30000	0.020	58995	0.038	
1RMB	IA-PRE-MAGR	AA51	6/14	0938	1738	480	3.25	1560.0	24255	0.016	6000	0.004			
1RHB	IA-PRE-MAGR	AA75	6/14	0938	1738	480	3.00	1440.0	41195	0.029	2000	0.001			
1RHB	IA-PRE-MAGR	AA99	6/14	0938	1738	480	3.25	1560.0	54285	0.035	3000	0.002			
1848	IA-PRE-MAGR	M327	6/14	0938	1738	480	3,00	1440.0	30780	0.021	1750	0.001			
1RHB	IA-PRE-MAGR	MB31	6/14	0938	1738	480	3.25	1560.0	30780	0,020	4000	0.003			
1848	IA-PRE-MAGR	M335	6/14	0938	1738	480	3.25	1560.0	47025	0.030	4000	0.003			
1844	IA-PRE-AGGR	AA63	6/14	1923	0330	487	3.25	1582.8	29645	0.019	21000	0.013	33495	0.021	
1RMA	IA-PRE-AGGR	AA72	6/14	1923	0330	487	3.25	1582.8	46200	0,029	35000	0.022	37730	0.024	
1RMA	IA-PRE-AGGR	AA87	6/14	1923	0330	487	3.00	1461.0	35420	0.024	30000	0.021			
1RMA	IA-PRE-AGGR	M324	6/14	1923	0330	487	3.25	1582.8	73530	0.046	30000	0.019			
1RMA	IA-PRE-AGGR	H 325	6/14	1923	0330	487	3.25	1582.8	83790	0.053	44000	0.028	57285	0.036	
1844	IA-PRE-AGGR	M329	6/14	1923	0330	487	3.00	1461.0	87210	0.060	30000	0.021	56430	0.039	
1RMA	IA-PRE-MAGR	AA70	6/14	1037	1840	483	3,30	1593.9	34255	0.021	6000	0.004	16170	0.010	
1RMA	IA-PRE-MAGR	AA74	6/14	1037	1840	483	3.25	1569.8	81620	0.052	10000	0,006	16555	0.011	
1RMA	IA-PRE-RAGE	AA98	6/14	1037	1840	483	3.25	1569.8	74690	0.048	10000	0.006	26565	0.017	
1RMA	IA-PRE-MAGR	M 321	6/14	1037	1840	483	3.25	1569.8	47025	0.030	9000	0.006			
1RMA	IA-PRE-RAGR	M338	6/14	1037	1840	483	3.20	1545.6	34200	0.022	10000	0.006			
1844	IA-PRE-MAGR	M339	6/14	1037	1840	483	3.25	1569.8	54720	0.035	10000	0.006			
1849	AM-PRE-BAGR	AA68	6/14	1026	1830	484	2.90	1403.6	11165	0.008	750	0.001			
1 RM 9	AM-PRE-MAGR	AA89	6/14	1026	1830	484	3.00	1452.0	8855	0.006	750	0.001			
1FB	FB-PRE-AGGR	AA62	6/14						1347		750				
1 FB	FB-FRE-AGGR	AA95	6/14						1347		750		1347		
1FB	FB-PRE-MAGR	AA59	6/14						1347		750		1347		
1FB	FB-FRE-MAGR	AA60	6/14						1347		750		1347		
1FB	FB-PRE-MAGR	AA71	6/14						1347		750		1347		
1FB	FB-FRE-RAGR	AA92	6/14						1347		750		1347		
1FB	FB-PRE-NAGR	M322	6/14								1750				
1FB	FB-PRE-MAGR	M330	6/14						2992		1750		2992		
1FB	FB-PRE-MAGR	M337	6/14						2992		1750		2992		

TABLE B1-2 (Continued - page 2)

		SAMPLE		PERIOD		THE BATE		VOL,	MAGISCAN II		UBTL		ड्स
<u>LOC.</u>	SAMPLE CLASS	No.	Dete	Start	Stop	<u>(min)</u>	<u>(lps)</u>	<u>_(1)</u>	Pibers	1/00	Fibers f/cc	<u>Fibers</u>	f/cc
1RMB	BZ-COV-WE#1	AA148	6/18	0930	1126	116	3.10	359.6	87010	0.242		11550	0.032
1848	BZ-COV-WK#2	AA111	6/18	0930	1126	116	2.96	343.4	8855	0.026		10010	0.029
121-18	BZ-COV-WK#3	AA150	6/18	0930	1126	116	3.12	361.9	17325	0.048		11550	0.032
1848	BZ-COV-HK#4	AA91	6/18	0930	1126	116	3.06	355.0	20405	0.057		19250	0.054
1RMB	BZ-REM HK#1	AA51	6/18	1235	1515	160	3.16	505.6	77385	0.153		202895	0.401
1RMB	BZ-BEH-WK#2	AA142	6/18	1235	1520	165	2.96	488.4	169015	0.346		1347	0.003
1RHB	BZ-REM-WK#3	AA143	6/18	1235	1515	160	3.12	499.2	219065	0.439		1347	0.003
1848	BZ-REM-WEA4	AA138	6/18	1235	1520	165	3.06	504.9	96635	0.191		163625	0.324
1848	CT-COV	AA64	6/18	0932	1126	114	3.16	360.2	12705	0.035		10010	0.028
12248	CT-COV	AA139	6/18	0932	1126	114	3.02	344.3	8085	0.023		13860	0.040
1248	CT-COV	AA140	6/18	0940	1126	106	3.00	318.0	12320	0.039		7315	0.023
124B	CT-COV	AA141	6/18	0932	1126	114	3,06	348.6	6930	0.020		9625	0.028
124B	CT-REM	AA22	6/18	1240	1520	160	3.00	480.0	72380	0.151		147070	0.306
1848	CT-REM	AA.52	6/18	1240	1520	160	3.16	505.6	113190	0.224		207515	0.410
1848	IA-COV	AA56	6/18	0932	1126	114	3.11	354.5	12705	0.036		6545	0.018
1 RHB	IA-COV	AA 59	6/18	0932	1126	114	3.14	358.0	9240	0.026		6930	0.019
12148	IA-REM	AA24	6/18	1239	1520	161	3.10	499.1	92785	0.186		191730	0.384
1848	IA-REM	AA.50	6/18	1239	1520	161	3.10	499.1	108185	0.217		219635	0.440
1848	OA-SEQ	AA.57	6/18	0934	1413	279	3.00	837.0	33495	0.040		44275	0.053
IRMB	OA-SEQ	AA137	6/18	0934	1413	279	3.00	837.0	34265	0.041		36575	0.044
1TLG	AH-SEQ	AA65	6/18	0740	1530	470	3.00	1410.0	31955	0.023		1347	0.001
1TLG	AM-SEQ	AA93	6/18	0740	1530	470	2,80	1316.0	31570	0.024		4235	0.003
1 FB	FB-COV-6/14	AA55	6/18						1347			1347	
1FB	FB-REH-6/14	AA.56	6/18						1347			1347	
									AC 0.5			1947	
THOMA	B2-US-W672	AAD	6/18	1043	1026	12	3.00	45.0	2095	0.060		1347	
IRMA	BZ-CUS-WK#4	AA48	6/19	1111	1126	15	3.00	45.0	134/	0.030		1347	0.030
1844	BZ-COV-WK#1	AA44	6/19	0939	1129	110	3.06	336,6	36190	0.108		9199	0.028
1RMA	BZ-COV-WK#2	AA45	6/19	1038	1129	51	3.12	159.1	15015	0.094		5652	0.03/
IRMA	BZ-COV-WE#3	AA43	6/19	0935	1129	114	2.95	337.4	40040	0.119		9779	0.029
1894	BZ-COV-NE#4	AA42	6/19	0938	1129	111	3.09	343.0	39270	0.114		11/42	0.034
1RMA	BZ-REM-WK#1	AA3_	6/19	1249	1448	119	3,06	364.1	197120	0.541		199045	0.547
1844	BZ-REM-WK#2	AA47	6/19	1250	1459	129	3.12	402.5	147070	0,365		50050	0.124
1RMA	BZ-REM-WK#3	AA1	6/19	1247	1459	132	3.09	411.0	189035	0.460		184030	0.448
1RMA	BZ-REM-WK#4	AA35	6/19	1248	1429	101	3,00	303.0	108185	0.357		193270	0.638
1RMA	BZ-RPS-WK#2	AA12 6	6/19	1440	1455	15	3.00	45.0	46585	1.035		47355	1.052
1RMA	BZ-RMS-WK#4	AA 7	6/19	1333	1348	15	3,00	45.0	45045	1.001		31955	0.710
1 RMA	BZ-RPS-WK#4	AA127	6/19	1448	1503	15	3.00	45.0	35035	0.779		41195	0.915
IRMA	BZ-RMS-WK#4	AA128	6/19	1300	1315	15	3.00	45.0	33880	0.753		42735	0.950
1844	CT-COV	AA40	6/19	0933	1130	117	3.05	356.9	22330	0.063		3187	0.009
1RMA	CT-COV	AA41	6/19	0933	1130	117	3,12	365.0	22330	0.061		10510	0.029
12MA	CT-REM	AA25	6/19	1245	1518	153	3.12	477.4	172865	0.362		211750	0.444
1RMA	CT-REM	AA53	6/19	1245	1518	153	3.00	459.0	194425	0.424		225995	0.492
18MA	IA-COV	AA37	6/19	0933	1130	117	3.06	358.0	17325	0.048		3207	0.009
1844	IA-COV	AA39	6/19	0933	1130	117	3.14	367.4	25025	0.068		6121	0.017
1244	TA-REM	AA23	6/19	1245	1518	153	3.66	468 2	176715	0.377		276045	0.590
1RMA	IA-REM	AA28	6/19	1245	1518	153	3.14	480.4	142835	0.297		163240	0.340
1814A	DA-FTM	AA31	6/19	0933	1406	273	3.16	862 7	48510	0,056		82778	0.096
12944	OA-PTM	AA39	6/10	0933	1406	273	3 60	619.0	58135	0.071		35535	0.043
an su			-, 10		2700	<u> </u>							
1TLG	AH-SEQ	AA21	6/19	0804	1540	456	3.00	1368.0	19250	0.014		1347	0.001
1TLG	AH-SEQ	AA.54	6/19	0804	1540	456	2.70	1231.2	43505	0.035		3888	0.003
1FB	FB-COV	AA4	6/19	0933	0934	1	3.00	3.0	1347			1347	
1FB	FB-COV-6/14	<u>AA57</u>	6/19	0933	0934	1	3.00	3.0	1347			1347	
1FB	FB-REM-6/14	AA58	6/19	1245	1246	1	3.00	3.0	1347			1347	

TABLE B1-2 (Continued - page 3)

		SAME	T.E	PER	IOD	TDE	RATE	VOL.	MAGISC	II M	UB1	<u>. </u>		SH
<u>loc.</u>	SAMPLE CLASS	No.	Date	Start	Stop	(min)	(lp=)	<u>m</u>	Fibers	1/cc	Fibers	f/cc	Fibers	_f/cc
1PMC	RZ-DPM-LECA1	AA13	6/20	1242	1447	125	3 12	390.0	215215	0.528			205975	0.528
1PMC	RZ-RFM-LEC	AA26	6/20	1241	1510	149	3 00	447 0	108570	0.243			133595	0.299
1RMC	RZ-REM-WK#3	AA125	6/20	1240	1510	150	3.02	453.0	100870	0.223			196350	0.433
IRMC	BZ-REM-WK#4	AA12	6/20	1240	1510	150	3.06	459.0	109340	0.238			132440	0.289
IRMC	BZ-RHS-WK#1	AA11	6/20	1408	1423	15	2.50	37.5	18095	0.483			14360	0.383
IRMC	BZ-RMS-WK#2	AA121	6/20	1259	1314	15	2.50	37.5	12320	0.329			5390	0.144
IRMC	BZ-RMS-WK#4	AA20	6/20	1330	1345	15	2.50	37.5	31570	0.842			41965	1.119
17947	(T _bb)		e 120	1226	1510	162	7 14	611 8	09045	0 103			104335	0 204
1RMC	CT-REM	AA9	6/20	1236	1519	163	3.00	489.0	83160	0.170			88935	0.182
			-,											
1RMC	IA-REM	AAZ	6/20	1241	1519	158	3.00	474.0	103950	0.219			108955	0.230
1RHC	IA-REM	AA32	6/20	1241	1519	158	3.12	493_0	100670	0.205			94710	0.192
1RMC	DA-SED	AA33	6/20	1239	1520	161	3.00	483 0	11165	0.023			2695	0.006
1RMC	OA-SEQ	AA124	6/20	1239	1520	161	3.16	508.6	6160	0.012			3465	0.007
							_							
10043	BZ-REM-WK#1	AA19	6/20	0751	0957	126	3.17	399.4 375.0	162470	0.407			155935	0.415
100753	DC-RETTEREZ	AA122	6/20	0752	0957	125	3.00	373.0	110725	0.285			209055	0.554
178473	BC-KEN WAFS	AA122	6/20	0754	1008	125	3.02	3//.5	119735	0.317			132440	0.323
1 DM2		AA20	6/20	0812	1000	15	3.00	27 5	34640	0.243			28875	0.020
10475	BC-BES-WAPI B7-DMS-LEC-1	AA123	6/20	1007	1027	15	2.50	36.0	43120	1 198			39655	1,102
1043	BC DAS VALTI	AA10	6/20	1007	10022	15	2 40	36.0	26180	0 727			18865	0.524
1843	BZ-RMS-WK#4	AA17	6/20	0904	0915	11	2.50	27.5	26180	0.952			32725	1.190
1843	CT-REM	AA147	6/20	0755	1054	179	3.00	537.0	108185	0.201			122240	0.290
10243	CT-REM	AA149	6/20	0755	1054	179	3.05	346.0	/50/5	0.138			224840	0.414
1603	TA-REM	AA16	6/20	0755	1053	178	3 00	534 0	128975	0.242			177485	0.332
1RH3	IA-REM	AA18	6/20	0755	1053	178	3.00	534.0	130130	0.244			155925	0.292
1RH3	OA-SEQ	AAB	6/20	0754	1104	190	3.11	590.9	91245	0.154			70840	0.120
1843	OA-SEQ	AA15	6/20	0754	1104	190	3.00	570.0	72765	0.128			82005	0.144
1716	AM-FTM	AA129	6/20	0720	1540	500	2 70	1350 0	75845	0 056			3465	0.003
ITIG	AM-PTM	AA130	6/20	0720	1540	500	2.90	1450.0	65835	0.045			3850	0.003
			-,											
1FB	FB-REM-6/14	AA97	6/20	0720	0721	1	3.00	3.0	1347				1347	
lfb	FB-REM-6/14	AA146	6/20	0720	0721	1	3.00	3.0	1347				1347	
1200	R7-DFM-LRAA	44152	6/21	0834	1203	200	3 12	652 1	81620	0 125			95865	0 147
IRMC	BZ-REM WK#2	AA153	6/21	0842	1203	201	3.00	603.0	63140	0.105			70840	0.117
IRMC	BZ-REM-WK#1	AA157	6/21	0836	1203	207	3.06	633.4	168630	0.256			109340	0.173
IRMC	BZ-REH-WK#3	AA158	6/21	0835	1203	208	3.02	628.2	80465	0.128			78155	0.124
													607.66	
IRMC	CT-REM	AA151	6/21	0636	1206	210	3.00	630.0	/3820	0.117			94/33	0.100
TIGHC	СТ-КЕМ	AA134	6/21	0836	1206	210	3.14	639.4	00008	0.134			03830	0.12/
1RMC	OA-FTH	AA155	6/21	0832	1209	217	3.00	651.0	48125	0.074			4620	0.007
IRMC	OA-FTM	AA156	6/21	0832	1209	217	3,11	674.9	41195	0.061			5775	0.009
			-,											
1RMC	IA-REM	<u>AA171</u>	6/21	0838	1206	208	3.10	644.8	74305	0.115			58520	0.091
IRMC	IA-REM	AA175	6/21	0838	1206	208	3.00	624.0	85470	0.137			82390	0.132
1840	RZ-IMS-14743	AA176	6/21	091.8	0233	15	3.00	45.0	34650	0.770			29645	0,659
IRMC	RZ-RHS-HK#2	AA177	6/21	0943	0959	16	3.00	48.0	20790	0.433			16170	0.337
IRMC	BZ-RAS-WK#3	AA178	6/21	0906	0923	17	3.00	51.D	21945	0,430			21945	0.430
IBHC	BZ-RMS-WK#4	AA170	6/21	1027	1042	15	3.00	45,0	16555	0.368			11165	0.248
			.				•		A				1013	0 000
ITLG		AA159	6/21	0/20	1220	300	3.00	900.0	2356	0.003			1347	0.001
באוננ	ATT 7 LTI	AGIOU	0/21	U/2U	1440	300	4. /V	010.0	TOTOD	U.UJZ			134/	v. vv2

TABLE B1-2 (Continued - page 4)

		SAMPLE	PERIOD	THE RATE	VOL.	MAGISCAN II		<u> </u>		<u> </u>	
<u>LOC.</u>	SAMPLE CLASS	No. Date	Start Stop	(min) (1m)	<u>_</u>	Fibers	1/cc	<u>Fibers</u>	<u>f/∝</u>	Fibers	1/00
1348	IA-PST-AGE	AA447 7/09	1801 0207	485 3.00	1458.0	31955	0.022			16901	0.012
112HB	IA-PST-AGER	AA454 7/09	1801 0207	485 3.00	1458.0	29529	0.020			27951	0.019
1104B	IA-PST-AGER	AA459 7/09	1850 0207	437 3.0 0	1311.0	38731	0.030			14976	0.011
1248	IA-PST-ACCR	MB27 7/09	1 8 01 0207	486 3,50	1701.0	37021	0.022			29412	0.017
126	IA-PST-AGGR	MB29 7/09	1 8 01 0207	486 3.00	1458.0	67032	0.048			38133	0.026
UPB	IA-PST-AGGR	MB31 7/09	1801 0207	486 3.40	1652.4	64296	0.039			29925	0.018
1948	OA-PST-AGGR	AA457 7/09	1801 0207	486 3.20	1555.2	14514	0.009			11627	0.007
18 9 8	IA-PST-RAGE	AA389 7/09	0900 1700	480 3.05	1464.0	26026	0.018	750	0.001		
1 124B	IA-PST-HAGR	AA417 7/09	0900 1700	480 3.00	1440.0	25025	0.017	2000	0.001		
1 646	IA-PST-BACR	AA432 7/09	0900 1700	480 3.00	1440.0	12589	0.009			13744	0.010
1024B	IA-PST-HAGR	MB32 7/09	0900 1700	480 3.20	1536.0	89347	0.058			10944	0.007
1 246	IA-PST-HAGR	MB35 7/09	0900 1700	480 3.15	1512.0	76266	0.050	1750	0.001		
imb	IA-PST-NACE	M837 7/09	0900 1700	480 3.05	1454.0	37021	0.025	1750	0.001		
1848	OA-PST-RAGE	AA416 7/09	0903 1700	477 3.00	1431.0	28952	0.020			9779	0.007
1844	IA-PST-AGGR	AA440 7/09	1814 0215	481 3.50	1683.5	52745	0.031			622 16	0.037
178MA	IA-PST-AGGR	AA448 7/09	1814 0215	481 3.00	1443.0	51243	0.036			72649	0.050
1994A	IA-PST-AGGR	AA453 7/09	1814 0215	481 3.25	1563.3	49742	0.032			62293	0.040
1)RMA	IA-PST-AGGR	MB33 7/09	1814 0215	481 3.50	1583.5	82849	0.049			76180	0.045
1994	IA-PST-AGGR	MB34 7/09	1814 0215	481 3.50	1683.5	106789	0.063			51471	0.031
178MA	IA-PST-AGER	M636 7/09	1814 0215	481 3.50	1683.5	136287	0.081	8000	0.005		
13944	OA-PST-AGGR	AA445 7/09	1814 0215	481 3.20	1539.2	42119	0.027			7584	0.005
1994A	IA-PST-HAGR	AA381 7/09	0900 1700	480 3.00	1440.0	82351	0.057			5852	0.004
1994A	IA-PST-HAGR	AA383 7/09	0900 1700	480 3.00	1440.0	85932	0.060	750	0.001		
1)PMA	IA-PST-HAGR	AA458 7/09	0900 1700	480 2.95	1416.0	80195	0.057			7584	0.005
17PMA	IA-PST-HAGR	M626 7/09	0900 1700	480 3.10	1488.0	122607	0.082			20178	0.014
19HA	IA-PST-HACR	MB28 7/09	0900 1700	480 3.20	1536.0	129278	0.084			13081	0,009
18HA	IA-PST-HAGR	HB30 7/09	0900 1700	480 3.05	1464.0	70281	0.048			14193	0.010
1844	OA-PST-HAGR	AA374 7/09	0903 1700	477 2.95	1407.2	35343	0.025	4000	0.003		
1TLG	AH-PST-BAGR	AA379 7/09	0853 0320	1107 2.85	3154.9	\$3247	0.026	750	0.000		
1116	AM-PST-RAGR	AA424 7/09	0853 1826	1107 3.00	3321.0	62793	0.018			5121	0.002
1 FB	FB-PST-6/21	AA172 7/09	1814 1815			1347		750			
1 FB	PB-PST-6/21	AA173 7/09	1814 1815	1.0		1347		750			
1 FB	FB-PST-7/18	M950 7/09	1814 1815	1.0		2992		1750			
1 FB	PB-PST-7/18	M951 7/09	1814 1815	1.0		10858		1750			

TABLE B2-1

LEGEND FOR FACILITY 2 PCM DATA

<u>LOC</u> ()	Facility and room location of sampled activity)
2xxx	Facility 2
RMD	Room D
RME	Room E
EW	Outside the Executive Washroom window
FB	Field Blank no sample taken
<u>SAMPLE</u> Locatio	<u>CLASS</u> (Sample type and location, activity, and ID) n
FB	- Field Blank
IA	Interior Area (Background in the work room)
OA	Outside Area (in the hall)
MA	Ambient (Outside the building)
BZ	Personal Breathing Zone
CT	Mobile Sampling Cart (proximate to work activity)
Acti	vity
PRE	Pre-removal activity - Full-term sample
PST	Post-removal activity - Full-term sample
REM	Removal work - Full-term sequential sample
COV	Preparation - Full-term sequential
RMS	Removal work - 15-minute short-term PBZ sample
COS	Preparation - 15-minute short-term BZ
SEO	Sample period covers seguential work activities
\ I	D
A	E GGR Aggressive sampling mode
N.	AGR Nonaggressive sampling mode
v	K#X Worker #X BZ sample
<u>m</u>	m/ <u>dd</u> Actual date of blank source
SAMPLE No.	Sample media Identification code and number
ΑΑχχχ	25-mm Cellulose Ester Filter Sample Number xxx (using a
	foil wrapped 2-inch cowl)
Myyy	37-mm Cellulose Ester Filter Sample Number xxx
N <u>xxx</u>	37-mm Polycarbonate Filter Sample Number xxx
RATE	Sample flow rate in liters per minute (1pm)
VOL	Sample volume in liters (1)
MAGISCAN I	I Magiscan II is a computerized image analysis system for PCM; results are in total fibers per cubic centimeter
Phase Cont	rest Microscopy using NIASH Nethod 7400R counting rules
IIBTI.	PCN analysis performed by litah Riological Testing Labs
NTOSH	P(M analysis performed in the NIOSH Ishorstory
Fibers	Total fibere
f/cc	Fibere per cubic continutor

f/ccFibers per cubic centimeterPOLParticulate Overload - Unable to count.

TABLE B2-2

	THASE	CONTRAS FOR A	st hic Niidor	noscopi ne asbe	ABALI	MALYSI	nesult: S	5	BOTE: Fo: co	r samples • half of	reported the limit	less th t of det	en detecta ection is	ble, used	
				PACILI		follows:	LAB_ 25	Pilt	er <u>37-m P</u>	<u>ilter</u>					
			CI	ME AT	I, OHI	0					USTL.	750	175	0	
		June 1	12, 25	- 28 6	July	11, 19	85				HIOSH 1347		2992		
		SAME	12	PERIOD		THE BATE		VOL.	MAGISC	AF II			IIOSE		
<u>LOC.</u>	SAMPLE CLASS	No.	Dete	Start	Stop	(min)	<u>(lm)</u>	<u> </u>	Fibers_	£/ec	Fibers	1/99	Fibers_	f/cc	
25HD	IA-FRE-AGGR	AA105	8/12	2316	0723	487	3.25	1582.8	45045	0.028	3000	0.002			
ZHD	IA-FRE-AGER	AA107	6/12	2316	0723	487	3.25	1582.8	21945	0.014	750	0.000			
25HD	IA-PRE-AGGR	<u>AA12</u> 0	5/12	2316	0723	487	3.14	1529.2	39655	0.025			5621	0,004	
ZHD	IA-FRE-AGER	M268	6/12	2316	0723	487	3.25	1582.8	29070	0.018	1750	0.001			
23HD	IA-PRE-AGGR	M274	6/12	2316	0723	487	3.25	1582.8	65322	0.041	1750	0.001			
251 0	IA-PRE-AGCR	M270	6/12	2316	0723	487	3.06	1490.2	33601	0.023			2992	0.002	
2240	1A-PRE-HAGR	AA116	8/12	1320	2134	494	3.12	1541.3	39270	0.025	750	0.000			
260	LA-FRE-MACR	AA117	6/12	1320	2134	494	3.25	1605.5	76230	0.047			1347	0.001	
299D	IA-PRE-HAGR	AA118	6/12	1320	2134	494	3.25	1605.5	60445	0.038	2000	0.001			
2240	IA-PRE-BACK	M262	6/12	1320	2134	494	3.12	1541.3	29925	0.019	1750	0.001			
200	IA-PRE-MAGR	H272	6/12	1320	2134	494	3.25	1605.5	10780	0.007	1750	0,001			
2524 D	IA-PRE-MACR	M278	6/12	1320	2134	494	3.25	1605.5	33687	0.021			2992	0.002	
224E	LA-FRE-AGR	<u>AA1</u> 06	6/12	2358	0802	484	3.11	1505.2	43505	0.029			27335	0.018	
ZHE	IA-PRE-AGGR	AA109	6/12	2358	0802	484	3.25	1573.0	50820	0.032	15000	0,010			
2546	LA-FRE-AGGR	AA119	6/12	2358	0802	484	3.25	1573.0	69685	0.044	10000	0.006			
ZHE	IA-PRE-AGGR	M2.56	6/12	2358	0802	484	3.25	1573.0	90630	0.058	30000	0.019			
ZPE	IA-PRE-AGGR	M2.60	6/12	2358	0802	484	3.25	1573.0	90630	0.058			5130 0	0.033	
ZHE	IA-PRE-AGGR	M2.64	6/12	2358	0802	484	3.16	1529.4	66690	0.044	20000	0.013			
201E	IA-PRE-MAGR	AA134	8/12	1334	2153	499	3.00	1497.0	33706	0,023			7084	0.005	
272E	IA-FRE-MAGR	AA135	6/12	1334	2153	499	2.96	1477.0	35343	0.024	750	0.001			
ZHE	IA-PRE-RACE	AA136	6/12	1334	2153	499	3.25	1621.8	15207	0.009	750	0.000			
2RE	IA-PRE-HAGR	M252	6/12	1334	2153	499	3.25	1521.8	21375	0.013	1750	0.001			
25HE	IA-FRE-MAGR	H2.54	6/12	1334	2153	499	3.16	1576.8	33345	0.021	1750	0.001			
ZHE	IA-PRE-MAGR	M2.58	6/12	1334	2153	499	3.25	1621.8	28215	0.017	3500	0.002			
2EH	M-PRE-FTER	AA104	6/12	1700	0700	840	3.00	2520.0	85085	0.034			1347		
201	AM-FRE-FTER	AA105	6/12	1700	0700	840	2.75	2310.0	88165	0.038			1347		
2 F B	FB-PRE-FIRM	AA102	6/12								750				
27B	FB-PRE-FTRM	AA103	6/12								750				
2FB	FB-PRE-FTRM	AA131	6/12						1463		750				
2FB	PB-PRE-PTRM	M266	6/12						2992						
273	FB-PRE-RACR	AA132	6/12						34265		750				
2FB	FB-PRE-RAGR	M276	6/12						4360		1750				
2 7 3	FB-PRE-6/14	M2.98	6/12						3249						
2FB	PB-PRE-6/14	M323	6/12						28129				2992		
2 F B	PB-PRZ-6/14	M 326	6/12						3249						
TABLE B2-2: (Continued - page 2)

		SAMPLE	: PER	ICD	THE	RATE	VOL.	MAGISCAN II	081	L		58
<u>LOC.</u>	SAMPLE CLASS	No. De	te Start	Stop	<u>(=4n)</u>	(1.00)	(1)	Fibers f/cc	Fibers	f/cc	Fibers	1/cc
25HD	BZ-COS-WK#1	AA186 6/	25 1020	1035	15	3.00	45.0		750	0.017		
232MD	BZ-COS-1442	AA190 6/	25 1000	1015	15	3.00	45.0		750	0.017		
224 0	BZ-COS-HK#3	AA179 6/	25 0930	0950	20	3,00	60.0		1500	0.025		
25HD	BZ-COV-WK#1	AA184 6/	25 0807	1125	199	3.14	624.9		6000	0.010		
2210	BZ-COV-WK#2	AA198 6/	25 0932	1133	121	3.05	369.1		6000	0.016		
232MD	BZ-COV-WK#3	AA187 6/	25 0807	1126	199	3.02	601.0		3000	0.005		
200	BZ-COV-WEA4	AA205 6/	25 0929	1114	105	3.00	315.0		3000	0.010		
25HD	BZ-REM-WK#1	AA194 6/	25 1245	1507	142	2.96	420.3		18000	0.043		
2010	BZ-REM WE#2	AA195 6/	25 1241	1507	146	3.05	445.3		270000	0.606		
2000	BZ-REH-WK#3	AA201 6/	25 1241	1507	146	3.02	440.9		230000	0.522		
25MD	BZ-REH-WK#4	AA207 6/	25 1240	1507	147	3.00	441.0		POL			
2640	BZ-RMS-WK#1	AA197 6/	25 1430	1445	15	3.00	45.0		60000	1.333		
29HD	BZ-125-14642	AA200 6/	25 1450	1505	15	3.00	45.0		62000	1.378		
230 D	BZ-R45-4K#2	AA202 6/	25 1300	1315	15	3.00	45.0		41000	0.911		
25HD	BZ-B15-1443	AA185 6/	25 1319	1334	15	3.00	45.0		32000	0.711		
28HD	BZ-RMS-WK#4	AA203 6/	25 1403	1419	16	3,00	48.0		140000	2.917		
25HD	CT-COV	AA180 6/	25 0757	1127	210	3.00	630.0		7000	0.011		
28MD	CT-COV	AA193 6/	25 0757	1127	210	3.11	653.1		9000	0.014		
25HD	CT-REM	AA182 6/	25 1242	1506	144	3.11	447.6		210000	0,469		
28HD	CT-REM	AA196 6/	25 1242	1506	144	3.00	432.0		250000	0.579		
			_									
2RHD	IA-COV	AA183 6/	25 0757	1127	210	3.00	630.0		8000	0.013		
ZRMD	IA-COV	AA191 6/	25 0757	1127	210	3.00	630.0		10000	0.016		
ZHD	IA-REM	AA192 6/	25 1243	1506	143	3.00	429.0		330000	0,769		
29HD	IA-REM	AA199 6/	25 1243	1506	143	3.00	429.0		190000	0.443		
2040	04-005	AA180 6	125 0757	1127	210	3 AQ	649 0		5000	0 008		
2040	04-007	AA206 6/	25 0757	1127	210	3 12	855 2		4000	0.005		
2000		AA101 6	25 0757	1506	149	3.14	443 0		19000	0 470		
2000		AAIOI 0/	1244	1506	142	3.14	443.0		120000	0.273		
	UN-KEM	AA200 0/	25 1244	1300	142	3.08	430.0		120000	0.2/5		
2EW	AM-REM	AA188 6/	25 0736	1515	459	2.60	1285.2		750	0.001		
2EW	AM-REM	AA204 6	25 0736	1515	459	2.70	1239.3		750	0.001		
2FB	FB-COV-6/18	AA030 6,	/25						750			

TABLE 32-2: (Continued - page 3)

		SAPPLE	PERIOD_	THE I	ATE	WUL,	MAGISCAN II		п	#10	58
<u>loc.</u>	SAMPLE CLASS	No. Date	Start Stop	(min) ((lpa)	<u>a</u>	Fibers f/cc	Fibers	f/cc	Fibers	f/cc
2040		44010 8/78		-		671 G		100000	0 161		
200	BC-REFT WEFT	AA219 0/20	1730 1446	210 2	L, 20 1 Ac	041.0 225 A		100000	V. 101		
200	BC BET VEFI	AA210 6/26	1330 1440	10 4	L.90 L 85	552 1		200000	0 362		
2010	R7-DTM-LETS7	AA206 6/26	1330 1448	76 3	1.05	237 0		75000	0 315		
20340	RZ-DYM-LECAS	AA220 6/26	0743 1115	212 3		540.2		RE			
22240	RZ-REM-MEAS	AA311 6/26	1331 1446	75 3	02	226 5		49000	0 215		
2200	BZ-BEH-MEAA	AA211 6/26	0746 1115	209 3	3.00	627_0		180000	0.287		
222 D	BZ-BEN HEAA	AA291 6/26	1333 1446	75 3		225.0		67000	0.298		
ZRMD	BZ-IMS-HK/1	AA284 6/26	0944 1000	16 3	3.00	48.0		9000	0.188		
28HD	BZ-INS-WK-1	AA295 6/26	1345 1400	15 3	5.00	45.0		30000	0.667		
ZEND	BZ-196-48/2	AA297 6/26	1406 1421	15 3	3.50	52.5		15000	0.286		
250 D	BZ-BHS-HK#2	AA301 6/25	0836 0851	15 3	3.00	45.0		34000	0.756		
25110	BZ-BMS-HEA3	AA303 6/25	1020 1035	15 3	00.1	45.0		10000	0.222		
28HD	BZ-INS-NK/3	AA308 6/26	1422 1437	15 3	9.50	52.5		24000	0.457		
22HD	BZ-BHS-HK#4	AA294 6/26	1001 1015	15 3	J.0 0	45.0		11000	0.244		
26HD	BZ-BPS-WEA	AA322 6/25	1440 1446	6 3	3.50	28.0		7000	0.250		
26HD	CT-RPM	AA214 6/25	0737 1117	220 3	3.00	660.0		110000	0.167		
2640	CT-REM	AA218 6/26	0737 1117	220 3	1.00	660.0		110000	0.167		
2840	CT-REM	AA285 6/25	1330 1450	80 3	3.00	240.0		35000	0.145		
26HD	CT-REM	AA326 6/26	1330 1450	80 3	3.00	240.0		21000	0.088		
	TA			000 5				160000			
	LA-KER	AA213 0/20	0737 1117	220 3	3.00 1.00	613 3		110000	0.162		
20070		AA217 0/20	1730 1460	220 3	9.00 1 Ar	9/3.4 944 8		26000	0 106		
2010	LA REAL	AA236 8/26	1330 1450	00 J		249.0		42000	0.100		
2000		RA323 0/20	1330 1430	60 J	9.00	240.0		42000	V. 17 J		
2240	OA-REM	AA221 6/26	0737 1117	220 3	9.09	679.6		10000	0.015		
28HD	CA-REM	AA222 6/26	0737 1117	220 3	3.12	686.4		10000	0.015		
28HD	OA-REM	AA292 6/26	1330 1450	80 3	3.12	249.6		51000	0.204		
ZHD	OA-REM	AA300 6/25	1330 1450	80 3	3.09	247.2		75000	0.303		
255	AM-REM	AA209 8/25	0717 1515	478 2	2.60	1242.6		750	0.001		
2EH	AN REM	AA216 6/25	0717 1515	476 2	2.90	1386.2		750	0.001		
253	70-274-6/10	AA024 6/96						750			
277R	PR-PPM-6/21	AA161 6/26						750			
	The second state										

TABLE B2-2: (Continued - page 4)

		SAMPLE	PERIOD	THE	RATE	VOL.	MAGISCAN II	081	<u>. </u>		<u>SH _</u>
<u>LOC.</u>	SAMPLE CLASS	No. Date	Start Stop	(min)	(<u>lrm</u>)	<u>a</u>	Fibers f/cc	Fibers_	f/cc	Fibers	f/cc
7040	RZ	AA281 6/27	0740 1117	217	2.95	542 3		FOL			
2040	RZ-RTM-LKA2	AA283 6/27	0740 1116	216	3 05	658 6		PCI.			
25240	RZ-REM-MK#3	AA282 6/27	0741 1117	216	3 02	652.3		310000	0.475		
2000	RZ-DPM-LECAA	AA293 6/27	0736 1119	221	3 00	663.0		POL.			
ZRHD	NZ-RMS-WE#1	AA312 6/27	1020 1035	15	3.00	45.0		43000	0.956		
2840	BZ-BMS-WK/2	AA298 6/27	0809 0824	15	3.00	45.0		POL.			
2840	BZ-RMS-WE#3	AA306 6/27	0825 0841	15	3.00	45.0		39000	0.867		
2RHD	BZ-RMS-WK#4	AA290 6/27	0945 1001	16	3.00	48.0		25000	0.521		
2640	CT-REN	M272 6/27	0736 1122	225	3.00	676.0		310000	0.457		
28MD	CT-REM	AA287 6/27	0736 1122	225	3.00	676.0		210000	0.310		
25MD	IA-REM	AA320 6/27	0736 1122	226	3.00	676.0		20000	0.029		
2RHD	IA-REM	AA324 6/27	0736 1122	225	3.06	691.6		POL.			
2RMD	OA-REM	AA299 6/27	0736 1123	227	3.00	681.0		6000	0.012		
ZEHD	OA-REM	AA323 6/27	0736 1123	227	3.06	694.6		8000	0.012		
2RHE	BZ-COV-NE#1	AA305 6/27	1316 1519	121	2.96	358.2		8000	0.022		
ZRE	BZ-COV-NK#2	AA307 6/27	1318 1519	121	3.05	369.1		20000	0.054		
2RME	BZ-COV-WK#3	AA316 6/27	1317 1519	122	3.02	368.4		8000	0.022		
ZREE	BZ-COV-WK#4	AA304 6/27	1316 1519	121	3.00	363.0		8000	0.022		
ZRE	BZ-COS-WK#1	AA250 6/27	1427 1442	15	2.96	44.4		2000	0.045		
20 1 E	BZ-COS-WK#2	AA228 6/27	1404 1419	15	3.00	45.0		2000	0.044		
28HE	BZ-COS-HK#3	AA255 6/27	1326 1341	15	3.00	45.0		1500	0.033		
2RHE	BZ-COS-WE#4	AA213 6/27	1447 1502	15	3.00	45.0		1500	0.033		
284E	CT-COV	AA243 6/27	1301 1523	142	3.00	426.0		10000	0.023		
284E	CI-COV	AA247 6/27	1301 1523	142	3.00	426.0		10000	0.023		
250E	IA-COV	MA234 6/27	1302 1523	141	3.06	431.5		5000	0.012		
281E	IA-COV	AA253 6/27	1302 1523	141	3.00	423.0		8000	0.019		
281E	GA-COV	MA227 6/27	1302 1520	138	3.12	430.6		28000	0.065		
289E	QA-COV	AA289 6/27	1302 1520	136	3.00	414.0		10000	0.024		
2EW	AM-FTM	AA309 6/27	0721 1525	484	3.00	1452.0		750	0.001		
2EM	AM-PTM	AA310 6/27	0721 1525	484	3.00	1452.0		750	0.001		
2FB	FB-COV-6/19	AA036 6/27						750			
2FB	FB-COV-6/21	AA162 6/27						750			

		<u>Fibers</u>																																
	H	1/6	0.278	0.169	0.231	0,060	0.32	0.4%		0.354	0.178	0.333	0.067	0.400	0,862	0.212	1.930	0.331	0.179	0.128	0.052		000	0.172	0.107	0.004	0.013	0.008	0.044	0,001	0.001			
	B	There	19000	32000	160000	10000	230000	85000	101	69000	8000	16000	8000	18000	31000	7000	110000	24000	130000	23000	10000	250000	65000	33000	21000	250	10000	6008	0006	750	750	852	250	ISOU
) †	MGISCAI II	Fibers 1/cc																																
	B	a	663.8	189.4	663.0	167.8	711.0	167.2	666.0	195.0	45.0	45,0	45.0	45,0	45.0	9,62	57.0	726.0	726.0	192.0	192.0	796.0		192.0	195.8	200.9	747.8	747.8	202.8	1200.0	1120.0			
	EATE	3	2.96	2.8	3.0	3.00	3.00	3.02	3.00	3.00	3.8	9.E	3.0	3.00	3.00	8.5	3,00	3.00	3.00	3.00	3.00	8	8	3.80	8.2	50.5	3.09	8.6	3.12	3.00	2.80			
			12	3		3	2	3	232	3	ង	16	ม	រ	3	Ħ	61	242	242	3	3	242	242	3	3	3	242	242	3	9 9	8			
	8	Stop	1135	BAGI	1135	1336	1139	1345	1135	1348	1318	1001	1335	0940	1023	1347	0822	1142	1142	WEI	WEI	1143	1149	1344	1344	1345	1142	1142	1345	1355	1355			
		Start	0744	1244	0744	1243	0742	1243	0743	1243	1303	5160	02EL	0625	1008	1336	0903	0740	0740	1240	1240	0720	0740	1240	1240	1240	0740	0740	1240	0715	0715			
	H		6/28	6/28	6/28	6/28	6/28	6/28	6/28	6/28	6/28	6/28	6/28	87,28	6/20	6/29	6/28	6/28	6/23	6/28	6/23	6 / 7 B		8/28	6/28	6/28	6/28	6/28	6/28	6/28	6/28	8/28	6/28	6/28
	3	4	1/27	M327	AA246	A 276	M 252	AA275	M212	AJEAA		M 260	M230	M235	EEZW	M 258	A 265	W2W	M263	M273	M 328	44740	A261	A280	AA3 02	M274	M259	M262	1164A	800W	M264	ALIG	SIEW	M 316
		SAPLE CLASS	1 /201 -121	107-101-101-21	52-101-101-20	<u>10-101-101-20</u>	BZ-REM-HELES	52-30H-HE43	B2-RDF-HEAM	M2H-Han-20	BC-BES-HEAT		BZ-WS-HE#2									14-054		IA-REH	IA-RDI	OA-RUD	New You	NCT-NO	OA-FEM	HTT-HA	HI-LH	PR-2794-6/21	PR-29-6/28	Martin Contract
		외							M	New York														7845		2010	200		200		Naz		Ę	E

TANLE N2-2: (Continued - page 5)

1/66

1-12

TABLE B2-2: (Continued - page 6)

		SAMPLE	PERIOD	TIME RATE	VOL.	MAGISCA	N II	UB	π		ISR
LOC.	SAMPLE CLASS	No. Date	Start Stop	(min) (lpm)	<u>(1)</u>	Fibers	£/cc	Fibers	1/00	Fibers	1/cc
250 D	IA-PST-AGGR	AA395 7/11	0013 0715	422 3.00	1266.0	13398	0.011	7000	0.006	24986	0.020
250 D	IA-PST-AGER	AA412 7/11	0013 0715	422 3.25	1371.5	189035	0.138	8000	0.006		
220	IA-PST-AGGR	AA414 7/11	0013 0715	422 3.00	1266.0	164395	0.130	10000	800.0	19366	0.015
200 D	IA-PST-AGGR	NE60 7/11	0013 0715	422 3.00	1266.0	68400	0.054	10000	800.0	33345	0,026
22D	IA-PST-AGGR	HB61 7/11	0013 0715	422 3.00	1266.0	173565	0.137	20000	0.016	42750	0.034
261 0	IA-PST-AGGR	HB62 7/11	0013 0715	422 3.00	1266.0	116280	0.092	10000	0.008	26505	0.021
2009D	OA-PST-AGGR	AA413 7/11	0013 0715	422 3.00	1266.0	198660	0.157	4000	0.003		
ZEND	IA-PST-HAGE	AA410 7/11	0827 1530	483 3.00	1449.0	82775	0.057	2000	0.001	5621	0.004
2220	IA-PST-BAGR	AA418 7/11	0827 1630	463 3.15	1521.5	38885	0.026	2000	0.001		
2240	IA-PST-HAGR	AA419 7/11	0827 1630	483 2.90	1400.7	48125	0.034	2000	0.001		
250MD	IA-PST-HAGR	HB40 7/11	0827 1630	483 3.00	1449.0	123120	0.085	3500	0.002		
2500	IA-PST-HAGE	H647 7/11	0827 1630	483 3.05	1473.2	127315	0.086	1750	0.001		
2500	IA-PST-KAGR	MB55 7/11	0827 1630	483 3.15	1521.5	70965	0.047	1750	0.001		
284D	OA-PST-BAGR	AA431 7/11	0827 1630	483 2.95	1424.9	43120	0.030	2000	0.001		
284E	IA-PST-AGGR	AA392 7/11	2300 0715	495 3.10	1534.5	123585	0.081	42000	0.027		
284E	IA-PST-AGGR	AA398 7/11	2300 0715	495 3.50	1732.5	92015	0.053	36000	0.021		
20 E	IA-PST-AGGR	AA420 7/11	2300 0715	495 3.50	1732.5	58135	0.034	32000	0.018		
ZHE	IA-PST-AGGR	M858 7/11	2300 0715	495 3.50	1732.5	169290	860.0	97000	0.056	78404	0.045
284E	IA-PST-AGGR	M859 7/11	2300 0715	495 3.00	1485.0	94905	0.064	93000	0.063	91485	0.062
264E	IA-PST-AGGR	MB68 7/11	2300 0715	495 3:50	1732.5	106875	0.062	59000	0.034	102600	0.059
ZRHE	OA-PST-AGGR	AA403 7/11	2300 0715	495 3.25	1608.8	103565	0.064	9000	0.006		
20 1 5	IA-PST-HAGR	AA415 7/11	0827 1630	483 3.05	1473.2	52745	0.036	3000	0.002		
ZRE	IA-PST-HAGR	AA421 7/11	0827 1630	483 3.00	1449.0	51590	0.036	4000	0.003		
2RE	IA-PST-HAGR	AA450 7/11	0827 1630	483 3.10	1497.3	77000	0.051	3000	0.002	7700	0.005
ZRE	IA-PST-HAGR	MB38 7/11	0827 1630	483 3.20	1545.6	106875	0.069	1750	0.001	13595	0.009
2RHE	IA-PST-HAGR	MB39 7/11	0827 1630	483 3.15	1521.5	90630	0.060	1750	0.001		
284E	IA-PST-MAGR	MB45 7/11	0827 1630	483 3.25	1569.6	129960	0.083	5000	0.003	9747	0.005
281E	OA-PST-HAGE	AA435 7/11	0827 1630	483 3.00	1449.0	20405	0.014	3000	0.002		
2EH	AH-PST-FTER	AA434 7/11	0850 1630	460 3.00	1380.0	41580	0.030	750	0.001		
2234	AM-PST-PTER	AA441 7/11	1024 0707	1243 3.00	3729.0	182490	0.049	750	0.000	1347	0.000
2EH	AM-PST-FTER	AA449 7/11	0850 1630	460 2.90	1334.0	20790	0.016	750	0.001		
2EH	AH-PST-FTER	AA408 7/11	1024 0707	1243 3.00	3729.0	162470	0.044	2000	0.001		
2FB	FB-PST-6/21	AA174 7/11				6314		750		9770	
2FB	FB-PST-7/18	M953 7/11				2992		1750			
2FB	FB-PST-7/18	MB54 7/11				2992		1750			

TABLE B3-1

LEGEND FOR FACILITY 3 PCH DATA

LOC	(Facil	ity and room location of sampled activity)
3xxx	-	Facility 3
RMF		Room F
RMG		Room G
TLG		Teachers Lounge outside window
SAMPLE C	LASS	(Sample type and location, activity, and ID)
Locat	<u>10n</u>	
FB TA		Fleid Blank
AL AL		Interior Area (Background in the work room)
UA		Outside Area (in the hall)
AM DR		Ambient (Outside the building)
BZ		Personal Breathing Zone
CT		Mobile Sampling Cart (proximate to work activity)
Ac	<u>tivity</u>	
PR	E -	Pre-removal activity - Full-term sample
PS	T	Post-removal activity - Full-term sample
RE	M	Removal work - Full-term sequential sample
CO	V	Preparation - Full-term sequential
RM	S	Removal work - 15-minute short-term PBZ sample
CO	S	Preparation - 15-minute short-term BZ
SE	Q	Sample period covers sequential work activities
	ID	
	AGGR	Aggressive sampling mode
	NAGR	Nonaggressive sampling mode
	WK# <u>X</u>	Worker #X BZ sample
	<u>mn/dd</u>	Actual date of blank source
SAMPLE N	<u>o.</u>	Sample media Identification code and number
АА <u>ххх</u>		25-mm Cellulose Ester Filter Sample Number xxx (using a
		foil wrapped 2-inch cowl)
M <u>xxx</u>		37-mm Cellulose Ester Filter Sample Number xxx
N <u>xxx</u>		37-mm Polycarbonate Filter Sample Number xxx
RATE		Sample flow rate in liters per minute (lpm)
VOL		Sample volume in liters (1)
MAGISCAN	II	Magiscan II is a computerized image analysis system for
		PCM; results are in total fibers per cubic centimeter
Phase Co	ntrast_	Microscopy_using NIOSH Method 7400B counting rules
UBTL		PCM analysis performed by Utah Biological Testing Labs
NIOSH		PCM analysis performed in the NIOSH Laboratory
Fibers		Total fibers
£ /		Pilana and and a continue

f/cc Fibers per cubic centimeter

FEASE	CONTRAST MICROSCOPY AMALYTICAL RESULTS
	FOR AIRBORNE ASBESTOS ANALYSIS
	FACILITY 3
	CINCINNATI, CHIO

NOTE: For samples reported less than detectable, one half of the limit of detection is used as follows: LAB 25-mm Filter 37-mm Filter UBTL 750 1750

		June 13	3, July 1-3 &	10, 1985				NIOSE	1347	299	2
		SAMPLE	PERIOD	TIPE RATE	VOL.	MAGISCA	<u> II </u>	<u>UB</u>	<u>п.</u>	IIQ	<u>58</u>
<u>LOC.</u>	SAMPLE CLASS	No. Date	Start Stop	<u>(min)</u> (120)	<u></u>	<u>Fibers</u>	<u>1/çç</u>	<u>Fibers</u>	<u>1/cc</u>	<u>Fibers</u>	<u>t/cc</u>
3624G	IA-PRE-AGGR	AA073 6/13	3 2315 0715	480 3.14	1507.2	57365	0.038			87203	0.058
310 IG	IA-PRE-AGGR	AA094 6/1	3 2315 0715	480 3.3	1584.0	93940	0.059			86625	0.055
360 G	IA-PRE-AGGR	AA133 6/13	3 2315 0715	480 3.3	1584.0	102410	0.065	62000	0.039		
3RHG	IA-PRE-AGGR	M293 6/13	3 2315 0715	480 3.1	1488.0	90630	0.061			134235	0.090
3804G	IA-PRE-AGGR	M294 6/13	3 2315 0715	480 3.3	1584.0	102600	0.065			159885	0.101
3RMG	IA-PRE-AGGR	M297 6/13	3 2315 0715	480 3.2	1536.0	83790	0.055			168435	0.110
3RMG	IA-PRE-MAGR	AA084 6/13	3 1344 2145	481 3.0	1443.0	130515	0.090			1347	0.001
3RHG	IA-PRE-MAGR	AA100 6/1:	3 1344 2145	481 3.0	1443.0	73535	0.051			1347	0.001
360 G	IA-PRE-BAGR	AA101 6/1:	3 1344 2145	481 3.1	1491.1	96250	0.065			1347	0.001
3RHG	IA-PRE-MAGR	M296 6/13	3 1344 2145	481 3.0	1443.0	152190	0.105			10260	0.007
JEM G	IA-PRE-RAGR	M299 6/1	3 1344 2145	481 3.2	1539.2	135945	0.088			9405	0.006
3RMG	IA-PRE-MAGR	M305 6/13	3 1344 2145	481 3.2	1539.2	54976	0.036			2992	0.002
367 F	IA-PRE-AGGR	AA077 6/1:	3 2303 0703	480 3.3	1584.0	1347	0.001			6930	0.004
3845	IA-PRE-AGGR	AA112 6/13	3 2303 0703	480 3.1	1488.0	65065	0.044			1347	0.001
3RHF	IA-PRE-AGGR	AA114 6/1	3 2303 0703	480 3.3	1584.0	93940	0.059				
3RMF	IA-PRE-AGGR	M292 6/1	3 2303 0703	480 3 3	1584 0	61560	0_039			23085	0.015
384F	TA-PRE-AGER	M303 6/13	3 2303 0703	480 3 2	1536 0	103455	0.067			2992	0.002
3RHF	TA-PRE-AGER	H304 6/13	3 2303 0703	480 3 2	1536 0	142785	0.093	30000	0.020		
3R2F	IA-PRE-AGGR	#320 6/1 3	3 2303 0703	480 3.2	1536.0		•••••				
32246	TA-PRF-MACR	AAOR1 6/33	2 1337 2197	480 3.0	1440.0	36768	0 026			1347	0 001
30145	TA-POF-MACE	AA113 6/13	a 1337 2137	420 3.0	1440.0	24524	0 017	1500	0.001		•••••
30145		AA115 6/13	a 1337 2137	480 3.0	1440.0	51075	0.017	1200	V. VV.	1347	0.001
30145	TA-DOT-MACD	M201 6/13	1337 2137	400 3.0	1499 0	20520	0.014			2002	0 002
3045	TA-DET-HACE	M201 6/1	2 1337 4 137 2 1337 3137	400 3.1	1440.0	10850	0.014			2002	0.002
3RMF	LA-PRE-MAGR	M302 6/1	3 1337 2137	480 3.1	1488.0	15219	0.010	4000	0.003	870£	0.002
759			•			1947		760			
36 D 31710	PD-TRL-FILE	AAU/0 0/13	5			1347		750			
387 D 37670	PD-FRE-FILE	AAU/6 0/1				1347		750			
JE D	FB-PKE-FILK	AAU65 6/13	5			1347		750			
32.9	PB-PRE-FIER	AA066 6/1	3			1347		750			
3415	PB-PRE-PTER	AA088 6/13	3			3426		750			
JFB	FB-PRE-FTER	AA096 6/1:	3			962		750			
3FB	FB-PRE-FTER	M295 6/13	3			2992		1750			
3FB	FB-PRE-FTER	M300 6/1	3			11371				2992	
3FB	FB-PRE-6/14	M328 6/13	3			7609				2992	
3FB	FB-PRE-6/14	M333 6/13	3			5472		1750			
3FB	PB-PRE-6/14	M336 6/13	3			1111		1750			
3L IIG	AM-FIER	AA082 6/13	3 1050 0637	1187 2.8	3323.6	242550	0.073			1347	0.000
31.JIG	AM-FTER	AA083 6/13	3 1050 0637	1187 2.8	3323.6	190960	0.057			1347	0.000

TABLE 13-2 (Continued - page 2)

		SAPLE	Ē	001		TATE	NGL.	MIGISCAN II	B	1	HTOSH
3	SWELL CLASS	No. Date	Start			Î	a	30/J Elite	मान्स्	200	क्रान्न राज्य
Ì	1624-800-21	10/1 125W	9636	0652	9	3.0	6. 9 1		750	0.016	
	112-008-111/3	10/1 8CZW	0617	0632	n :	0.0	45.0		2	0.017	
ļ		10/1 4524		1000	2	9.0	0.111		2000	0.018	
		10/2 092W			5	8.7	41.0		89	0.011	
		10// 95757			8					900 0	
	NUMPERATING	10/2 8157			រង	8.5				0.007	
Ì		10/1 922W		1515	105	3.8	1001		320000	1.000	
Ĭ		10/2 44244	1030	121	5	2.86	1.196		00009	0.105	
Ì		A242 7/01	1030	1233	5	3.05	375.2		15000	0.000	
Ì	24724-1422-212	A3365 7/01		1515	ŝ	3.05	10.3		160000	0.500	
h		10/2 816AA	1030	1213	128	3.6	375.5		23000	82 .0	
		10/2 06EW	1336	2121	ŝ	3.02	17.11		160000	0. 305	
		AA2A5 7/01	1030		2	3.08	348.0		10000	0.267	
		10/2 50CW	1330	1515	105	9.60	315.0		76000	0.241	
		10/1 555W	1401	1413	•	•	0.0		27000	1.000	
ļ		10/2 OVER	1437	1452	ม		9.9		32000	0.711	
		10/2 ELEAN	1047	1102	2		45.0		21000	0.467	
ij		10/1 14CM		1352	2		45.0		57000	1.267	
Ì		10/7 ASSM	1306	9261	2	9.0	45.0		42000	0.965	
		1016 21244	0750			1	0 277		. 600		
						88				3.0	
5									1200		
		10// 2527	B			2.2	1.925		240000		
		M276 7/01				8	360.0		57000	0.138	
Ì		10/1 50577			81	2.5	136.4		250	0.002	
ij		10/7 24EAA	1330	1530	120	3.8	140.0		340000	0.944	
	14-019	1017 3701		2001	110	8	0 267		UUUT		
;]						3 1					
										0.00	
1						1			000027		
		10// /SZM				8.8					
					3	8:	1. 100 L				
j				3	9	7.			100087	R.S	
Ì	00-00A	10/1 022VV	0759	1028	148	3.12	466.9		009	0.009	
Ì	NC2-10	M270 7/01	0750	1028	148	3.06	456.0		82	0.009	
Ì	CA-PUP	M236 7/01	1330	1530	120	3.12	374.4		0004	0.011	
Ì	N-FIZH	10/1 1A2M	1247	1330	64	3.12	134.2		3000	0.022	
		M256 7/01	1035	1233	118	3.06	361.1		7000	0.019	
	CA-FIZH	A257 7/01	1855	1150	22	3.12	234.0		2000	0.000	
Ì	Non-Pon	10/2 88544	1330	1530	120	3.06	367.2		2000	0.014	
5		AA164 7/01							2		
2	17/0_UNT_0/								r.		
	H14-14	A267 7/01	0750	1545	475	3.0	1425.0		750	0.001	
	HI-LIN	M268 7/01	0750	1545	475	2.0	1330.0		750	0.001	
1		•	,			i			•		

			I	İ		ļ	ļ	1				I
20	SAMPLE CLASS			湖대			Ĵ.		Tibers 4/cc	IIII IIII	100	Tibers
	1 4724 - 1428- 21	M 332	7/02	1259	1312	5 51	2.82	375.1		40000	1.066	
	2424-423-20	M345	7/02	1255	1413	78	3.00	234.0		330000	1.410	
	CALIFORNIA HEAL	M355	20/12	1323	1512	109	3.00	327.0		360000	1.181.1	
	MUH-HAR-24	845W	7/02	1256	1512	M	3.06	410.0		390000	155.0	
	14781-548-28	M360	7/02	IMI	1356	3	3.0	45.0		00006	2.000	
	CONTRACTOR	M353	7/02	1430	1452	2	3.00	66.0		210000	3.162	
	Man-Sa-20	M 359	7/02	1457	1511	1	3.00	42.0		390000	9.206	
	1011-SA-20	M369	7/02	1313	1661	8	3.00	0 ⁻ ¥		150000	2.776	
	ļ						1					
			7/02	1251			2.62	103.3		Z60000	19 0	
		M356	7/02	1257	1520	143	3.00	429.0		410000	0.956	
		00000		ļ						960000		
Ç			1	Ì		711	3.0	n. 875			BTO.0	
	Han-Al	M352	7/02	1251	1520	143	3.12	446.2		340000	0.762	
											i	
	NAM-NO	M329	7/02	1257	1520	143	2.80 8	414.7		190000	0.458	
	NG1-VO	M3 37	7/02	1257	1520	143	3.00	429.0		190000	0.443	
		M362	20/2	0735	1127	222	2.02	654.2		170000	0.250	
	24-20-1-1-1-1-22	M361	7/02	0735	1119	Ż	3.05	683.2		180000	0.253	
	CANAN MUSI-SA	M 376	7/02	0735	1127	222	3.02	700.6		320000	0.457	
	MAN NUR-20	M375	7/02	0735	1119	ž	3.0	605.4		310000	0.452	
		TAGMA 7	7/02	0612	0827	15	3.00	45.0		7000	951.0	
	2474-242-28	M346	7/02	0632	0847	2	3.00	45.0		34000	0.756	
		A354	7/02	0942	0057	15	3.00	45.0		41000	0.911	
	1021-1021-20	M360	7/02	1005	1020	51	3.00	45.0		110000	2.444	
		A356	2027	0735	1127	232	3.0	0.965.0		30000	0.431	
		M 370	7/02	0735	1127	232	2.82	654.2		300000	0.450	
						6						
Ş		M363	7/02	0735	112/	797	3.00	696.0		380000	000	
	IA-FUN	TTCAN	20/2	0735	1127	232	3.12	723.8		270000	0.373	

IAMI N3-2 (Continued - page 3)

103E

	CA-PEN	AA330	7/02	0735	1128	233	3.12	727.0	750	0,001
	OA-REM	AA340	7/02	0735	1128	233	3.06	713.0	750	0.001
	PB-REM-6/21	M166	7/02						750	
E	PB-REH-6/21	M167	7/02						750	
31 MG	HLL-H	166.00	7/02	0727	1525	478	3.0	1434.0	1500	0.001
	HLA-HW	86EM	7/02	0727	1525	47B	2.8	1338.4	750	100.0
							1			
	Large - 142178 - 212	M 366	//03	0742		213	2.0.2	600.7	480000	0. /49
	BZ-BEN-HER-28	A336	7/03	0740	1115	213	3.05	655.8	270000	0.412
	CANH-HER-ZE	CACAA	7/03	0739	1115	216	3.02	652.3	310000	0.475
	BC-BIN HEAL	736AM	7/03	0741	1115	214	3.06	654.8	40000	0.611
	1934-SHR-29	A 373	2/03	1010	1030	20	3.00	0.09	10000	1.667
	C4734-S44-21	176M	7/03	0616	0631	1	Э.00	45.0	32000	0.711
		875AA	2/03	0755	0810	1	3.00	45.0	28000	0.622
	1731-SH-28	AA380	2/09	8480	1003	2	3.00	45.0	4600	1.62
		AA351	2/03	167.0	1115	218	2.82	614.8	410000	0.667
	Nam-1	A364	3/8	0737	1115	1	3.0	654.0	370000	0.566
1							, , ,	, , , , , , , , , , , , , , , , , , ,		
	HA-MEN			1510			8.0	654.0	310000	474.0
	Hay-Al	A372	2/8	0737	5111	218	3.12	680.2	42000	0.617
	HON-NO	AA382	2/03	0737	1115	218	3.00	0. 428	24000	0.367
	Hax-NO	18CAA	2/03	1670	1115	218	3.8	645.3	15000	0.232
G	FB-204-6/21	AA168	2/03						750	
828	13-204-6/21	AA169	2/03						750	
		AA365	2/03	0720	1150	270	2.8	756.0	750	0.001
		M367	50/1	0720	1150	270	3.0	810.0	750	0.001
								B-17		

LGC, SMMETE CLASS Bo, Date 4 Start Stop (min) (lum) (l) Fibers f/cc f/cc Fibers f/cc <th cd<="" th=""> f/cc f/cc <</th> <th></th> <th></th> <th>SAMPLE</th> <th>PERIOD_</th> <th>TTE PATE</th> <th><u></u></th> <th>MGISC</th> <th><u>NI II</u></th> <th>UBTLECH</th> <th>7400-B</th> <th>TOSTO</th> <th><u>7400-B</u></th>	f/cc f/cc <			SAMPLE	PERIOD_	TTE PATE	<u></u>	MGISC	<u>NI II</u>	UBTLECH	7400-B	TOSTO	<u>7400-B</u>
SHE 1 LA-PST-MCRE AA422 7/10 1750 0218 504 3.0 1524.0 28585 0.017 2000 0.001 SHE 1 LA-PST-MCRE AA422 7/10 1750 02218 504 3.0 1524.0 28540 0.012 2000 0.001 2860 0.013 2000 0.001 2860 0.013 2000 0.001 2860 0.012 2000 0.001 2860 0.017 750 0.001 2867 0.017 750 0.001 1296 0.007 1296 0.001 1247 0.001 1247 0.001 1246 0.017 750 0.001 1247 <td< th=""><th><u>10C.</u></th><th>SAMPLE CLASS</th><th>No. Date</th><th>Start Stop</th><th>(min) (1pm)</th><th><u> </u></th><th>Fibers</th><th>1/00</th><th>Fibers</th><th><u>1/œ</u></th><th>Fibers</th><th>1/~</th></td<>	<u>10C.</u>	SAMPLE CLASS	No. Date	Start Stop	(min) (1pm)	<u> </u>	Fibers	1/00	Fibers	<u>1/œ</u>	Fibers	1/~	
SHC L-PST-AGR AAA25 7/10 750 0.218 508 3.0 1524.0 25400 0.019 2000 0.001 SHC L-PST-AGR AAA25 7/10 750 0218 508 3.0 1524.0 3155 0.012 2000 0.001 2892 0.002 SHC L-PST-AGR HBSA 7/10 1750 0218 508 3.5 1778.0 622440 0.042 0.001 12996 0.007 SHC LA-PST-AGR HAA3 7/10 1750 0218 508 3.5 1778.0 622440 0.047 750 0.001 12996 0.007 SHC LA-PST-HAGR AAA33 7/10 0842 1655 443 3.0 1479.0 24640 0.017 750 0.001 1347 0.001 SHC LA-PST-HAGR AAA33 7/10 0842 1655 443 3.0 1479.0 10450 0.073 750 0.001 1347 0.001 SHC LA-PST-HAGR MAA3 7/10 0842 1655 453 3.1 1525.0 150 0.131 0.001 1000	Jih g	IA-PST-AGER	AA422 7/10	1750 0218	508 3.0	1524.0	26565	0.017	2000	0.001			
SHC IA-PST-AGRE AAA28 7/10 1750 0.218 500 3.0 1324.0 31255 0.212 2000 0.001 2892 0.002 SHC IA-PST-AGRE HBS3 7/10 1750 0218 500 3.5 1778.0 74641 0.4421 0.602 1750 0.001 2892 0.002 SHC IA-PST-AGRE HBS3 7/10 1750 0218 500 3.5 1778.0 74641 0.4421 0.602 1555 0.007 3.0 0.001 2867 0.001 2867 0.001 12966 0.007 0.001 1296 0.001 1247 0.001 1247 0.001 1247 0.001 1247 0.001 1479.0 1150 0.073 750 0.001 1477 0.001 1479.0 1750 0.001 1479.0 0.001 1479.0 0.001 1479.0 0.001 1479.0 0.001 1479.0 0.001 1479.0 0.001 1479.0 0.001 1479.0 0.001 1479.0 0.001 1479.0 0.001 1479.0 0.001 1479.0 0.001	3 H G	IA-PST-AGER	AA425 7/10	1750 0218	508 3.0	1524.0	28490	0.019	2000	0.001			
SHC 14-PST-40C2 HBS 7/10 1750 0218 508 3.5 1778.0 74641 0.042 1750 0.001 SHC 14-PST-40C2 HBS 7/10 1750 0218 508 3.5 1778.0 62240 0.057 750 0.001 12996 0.007 SHC 14-PST-40C2 HBS 7/10 1750 0218 508 3.5 1778.0 62240 0.057 750 0.000 12996 0.007 SHC 14-PST-40C2 HA433 7/10 0421 1655 463 3.0 1479.0 24640 0.017 750 0.001 1347 0.011 SHC 14-PST-40C2 HA433 7/10 0421 1655 463 3.0 1479.0 10070 0.073 750 0.001 1347 0.011 SHC 14-PST-40C2 HA33 7/10 0442 1655 463 3.2 1577.6 22200 0.011 1750 0.001 SHC 14-PST-40C2 HA433 7/10 0442 1655 462 3.1 1525.2 45045 0.030 1500 0.001 25000 0.011 346 346 341 1663	3RHG	IA-PST-AGER	AA428 7/10	1750 0218	508 3.0	1524.0	31955	0.021	2000	0.001			
3806 IA-FST-AGGR MS3 7/10 1750 0218 508 3.5 1778.0 62349 0.642 1750 0.602 12966 0.007 3807 IA-FST-AGGR MA43 7/10 1750 0218 508 3.5 1778.0 62249 0.047 0.652 1750 0.000 3807 IA-FST-AGGR MA43 7/10 0842 1855 493 3.0 1479.0 24640 0.057 0.001 12966 0.007 3807 IA-FST-MAGR MA33 7/10 0842 1855 493 3.0 1479.0 106570 0.073 750 0.001 1347 0.001 3807 IA-FST-MAGR MA33 7/10 0842 1855 443 3.0 1479.0 106570 0.073 750 0.001 0.001 3807 IA-FST-MAGR MA37 7/10 0842 1855 443 3.0 1479.0 106570 0.073 750 0.001 0.001 3807 IA-FST-MAGR MA37 7/10 0842 1855 443 3.1 1525.0 35610 0.022 1750 0.001 0.001 3807 IA-FST-MAGR MA37 7/10 0842 1855 443 3.1 1466.3 25650 0.017 1750 0.001 0.001 3807 IA-FST-MAGR MA37 7/10 0843 1855 492 3.1 1325.2 45045 0.030 1500 0.002 0.001 3807 IA-FST-MAGR MA37 7/10 0843 1855 492 3.1 1325.2 45045 0.030 1500 0.01 6.001 3807 IA-FST-MAGR MA47 7/10 1603 0208 605 3.5 2117.5 64125 0.030 1500 0.01 6.001 3807 IA-FST-MAGR MA451 7/10 1603 0208 605 3.5 2117.5 46125 0.028 2000 0.011 63270 0.633 3807 IA-FST-MAGR MA451 7/10 1603 0208 605 3.5 2117.5 46125 0.023 2000 0.011 3807 IA-FST-MAGR MA451 7/10 1603 0208 605 3.5 2117.5 46125 0.024 0.000 3807 IA-FST-MAGR MA451 7/10 1603 0208 605 3.5 2117.5 46125 0.034 0.025 3807 IA-FST-MAGR MA451 7/10 1	3RMG	IA-PST-AGER	HB52 7/10	1750 0218	508 3.5	1778.0	74641	0.042			2992	0.002	
SRE LATST-AGR HE54 7/10 1750 0218 508 3.5 1778.0 62249 0.047 12996 0.007 SRE DATEST-AGR AA433 7/10 1750 0218 508 3.0 1524.0 06524 0.057 750 0.000 SRE LATST-AGR AA33 7/10 0842 1655 493 3.0 1419.0 11650 0.079 0.001 1347 0.001 SRE LATST-AGR AA33 7/10 0842 1655 493 3.0 1479.0 0.021 1750 0.001 1347 0.001 SRE LATST-AGR MA37 7/10 0842 1655 493 3.2 1577.6 22230 0.014 1750 0.001 SRE LATST-AGR MA37 7/10 0842 1655 493 3.1 1525.2 45045 0.030 1500 0.001 6004 0.021 1750 0.0401 63270 0.603 SRE LATST-AGR MA457 7/10 1603 0208 605 3.5 2117.5 64455 0.022 23000 <th>3RHG</th> <td>IA-PST-AGER</td> <td>MB53 7/10</td> <td>1750 0218</td> <td>508 3.5</td> <td>1778.0</td> <td>92340</td> <td>0.052</td> <td>1750</td> <td>0.001</td> <td></td> <td></td>	3RHG	IA-PST-AGER	MB53 7/10	1750 0218	508 3.5	1778.0	92340	0.052	1750	0.001			
SNFD 0A-PST-AGGR AA443 7/10 1750 0218 508 3.0 1524.0 86240 0.057 750 0.000 SNFD IA-PST-BAGR AAA33 7/10 0902 1655 473 3.0 1419.0 111850 0.073 750 0.001 1347 0.001 SNFD IA-PST-BAGR MA33 7/10 0422 1555 443 3.0 1479.0 106570 0.001 1347 0.001 SNFD IA-PST-BAGR MA33 7/10 0422 1555 443 3.2 1577.6 22230 0.011 1750 0.001 SNFD IA-PST-BAGR MA437 7/10 0424 1555 443 3.1 1326.2 45045 0.030 1500 0.001 1500 0.001 1500 0.001 1500 0.001 1500 0.001 1500 0.001 1500 0.001 1500 0.001 1500 0.001 1500 0.001 1500 0.001 1500 0.001 1500 0.001 1500 0.0025 1500	36HG	IA-PST-AGGR	H854 7/10	1750 0218	508 3.5	1778.0	82849	0.047			12996	0.007	
SNF5 IA-PST-BAGR AA433 7/10 0842 1855 443 3.0 1479.0 24640 0.017 750 0.001 SNF5 IA-PST-BAGR AA439 7/10 0902 1855 443 0.017 750 0.001 1347 0.001 SNF5 IA-PST-BAGR AA439 7/10 0842 1655 493 3.0 1419.0 106570 0.073 750 0.001 SNF5 IA-PST-BAGR MA439 7/10 0842 1655 493 3.3 1825.0 35910 0.022 1750 0.001 SNF5 IA-PST-BAGR MA437 7/10 0843 1655 492 3.1 1325.2 45045 0.030 1500 0.001 40040 0.022 SNF5 IA-PST-AGGR AA437 7/10 1603 0206 605 3.1 1996.5 31185 0.016 25000 0.011 40040 0.022 1037 40040 0.022 1037 1059 1041 1050 0.030 10160 10206 1055 11155 </td <th>36146</th> <td>QA-PST-AGER</td> <td>AA443 7/10</td> <td>1750 0218</td> <td>508 3.0</td> <td>1524.0</td> <td>86240</td> <td>0.057</td> <td>750</td> <td>0.000</td> <td></td> <td></td>	3 61 46	QA-PST-AGER	AA443 7/10	1750 0218	508 3.0	1524.0	86240	0.057	750	0.000			
SBNC IA-PST-BACE AA336 7/10 0822 1655 473 3.0 1419.0 111650 0.079 1347 0.001 SBNC IA-PST-BACE AA339 7/10 0842 1655 493 3.0 1479.0 108570 0.073 750 0.001 SBNC IA-PST-BACE HB43 7/10 0842 1655 493 3.1 1252.0 0.014 1750 0.001 SBNC IA-PST-BACE HB43 7/10 0843 1655 493 3.1 1252.2 45045 0.030 1500 0.001 SBNF IA-PST-BACE AAA37 7/10 0843 1655 492 3.1 1252.2 45045 0.030 1500 0.001 SBNF IA-PST-BACE AAA37 7/10 0843 1603 0208 605 3.1 1815.0 72765 0.040 0.001 40040 0.022 SBNF IA-PST-ACCE MA451 7/10 1603 0208 605 3.5 2117.5 64125 0.030 6025 4600 0.025 46000 0.025 43520 0.021<	3621G	IA-PST-BACR	AA433 7/10	0842 1655	493 3.0	1479.0	24540	0.017	750	0.001			
SNHC IA-PST-BACE AA39 7/10 042 1655 493 3.0 1470.0 10670 0.073 750 0.001 SNHC IA-PST-BACE H841 7/10 0422 1655 493 3.2 1577.6 22230 0.014 1750 0.001 SNHC IA-PST-BACE H843 7/10 0402 1655 493 3.1 1266.3 25650 0.017 1750 0.001 SNHC IA-PST-BACE H843 7/10 0402 1655 493 3.1 12625.2 45045 0.030 1500 0.001 SNHF IA-PST-BACE AA437 7/10 1603 0208 605 3.1 1815.0 72765 0.040 40040 0.022 SNHF IA-PST-ACCE AA451 7/10 1603 0208 605 3.5 2117.5 60445 0.022 23000 0.011 63270 0.630 SNHF IA-PST-ACCE MA452 7/10 1603 0208 605 3.5 2117.5 64125 0.030 6450 </td <th>3 RHG</th> <td>IA-PST-RAGR</td> <td>AA438 7/10</td> <td>0902 1655</td> <td>473 3.0</td> <td>1419.0</td> <td>111650</td> <td>0.079</td> <td></td> <td></td> <td>1347</td> <td>0.001</td>	3 RHG	IA-PST-RAGR	AA438 7/10	0902 1655	473 3.0	1419.0	111650	0.079			1347	0.001	
SBNE IA-FST-MAR M841 7/10 0842 1655 493 3.3 1628.9 35010 0.022 1750 0.001 SBNE IA-FST-MAR M843 7/10 0842 1655 493 3.1 1466.3 22630 0.014 1750 0.001 SBNE IA-FST-MAR M843 7/10 0902 1655 473 3.1 1466.3 22650 0.017 1750 0.001 SBNE IA-FST-MAR M437 7/10 0943 1655 492 3.1 1365.3 0.015 25000 0.011 SBNE IA-FST-MAR M437 7/10 1603 0208 605 3.5 2117.5 60445 0.029 23000 0.011 SBNE IA-FST-MAR M442 7/10 1603 0208 605 3.5 2117.5 60445 0.029 23000 0.011 63270 0.633 SBNE IA-FST-MAR M445 7/10 1603 0208 605 3.5 2117.5 64125 0.030 63270 0.633 SBNE IA-FST-MAR M445 7/10 1603 0208 605 3.5 2117.5 32147 0.011 </td <th>39HG</th> <td>IA-PST-HAGE</td> <td>AA439 7/10</td> <td>0842 1855</td> <td>493 3.0</td> <td>1479.0</td> <td>108570</td> <td>0.073</td> <td>750</td> <td>0.001</td> <td></td> <td></td>	39HG	IA-PST-HAGE	AA439 7/10	0842 1855	493 3.0	1479.0	108570	0.073	750	0.001			
SBHC IA-PST-HACR MB42 7/10 0842 1655 493 3.2 1577.6 22230 0.014 1750 0.001 SBHS IA-PST-HACR MB43 7/10 0902 1655 473 3.1 1466.3 25650 0.017 1750 0.001 SBHS IA-PST-HACR MA437 7/10 0843 1655 492 3.1 1525.2 45045 0.030 1500 0.001 SBHS IA-PST-ACCR AA4451 7/10 1603 0208 605 3.5 2117.5 60445 0.029 23000 0.011 63270 0.633 SBHF IA-PST-ACCR MA451 7/10 1603 0208 605 3.5 2117.5 64425 0.029 23000 0.011 63270 0.633 SBHF IA-PST-ACCR MA451 7/10 1603 0208 605 3.5 2117.5 64453 0.622 46000 0.622 43500 0.623 43520 0.633 SBHF IA-PST-ACCR MA455 7/10 1603 <	3RHG	IA-PST-BAGR	1841 7/10	0842 1655	493 3,3	1626.9	35910	0.022	1750	0.001			
SBFG LA-FST-HAGR H943 7/10 0902 1655 473 3.1 1466.3 25650 0.017 1750 0.001 SBFG LA-FST-HAGR AA437 7/10 0843 1655 492 3.1 1525.2 45045 0.030 1500 0.001 SBFF LA-FST-AGGR AA437 7/10 1603 0208 605 3.0 1815.0 72765 0.040 0.011 40040 0.022 SBFF LA-FST-AGGR AA432 7/10 1603 0208 605 3.5 2117.5 60445 0.029 23000 0.011 63270 0.630 SBFF LA-FST-AGGR M445 7/10 1603 0208 605 3.5 2117.5 64125 0.030 0.025 45000 0.025 45000 0.025 45320 0.030 SBFF LA-FST-MAGR M445 7/10 1603 0208 605 3.5 2117.5 32147 0.015 5390 0.002 SBFF LA-FST-HAGR AA435 7/10 0445 <td< td=""><th>38HG</th><td>IA-PST-HACE</td><td>MB42 7/10</td><td>0642 1655</td><td>493 3,2</td><td>1577.6</td><td>22230</td><td>0.014</td><td>1750</td><td>0.001</td><td></td><td></td></td<>	38HG	IA-PST-HACE	MB42 7/10	0642 1655	493 3,2	1577.6	22230	0.014	1750	0.001			
SERG OA-PST-HACR AAA37 7/10 0 843 1555 492 3.1 1525.2 45045 0.030 1509 0.001 SERF IA-PST-AGCR AA384 7/10 1603 0208 605 3.3 1966.5 31185 0.016 25000 0.013 40040 0.022 SERF IA-PST-AGCR AA451 7/10 1603 0208 605 3.5 2117.5 60445 0.029 23000 0.011 63270 0.030 SERF IA-PST-AGCR MA455 7/10 1603 0208 605 3.5 2117.5 60445 0.025 46000 0.025 45000 0.026 43520 0.021 SERF IA-PST-AGCR MA455 7/10 1603 0208 605 3.5 2117.5 32147 0.015 5390 0.003 SERF IA-PST-AGCR MA455 7/10 1603 0208 605 3.5 2117.5 32147 0.015 5390 0.003 SERF IA-PST-AGCR MA455 7/10 06455 1655 490<	3924G	IA-PST-HAGR	M643 7/10	0902 1655	473 3.1	1466.3	25650	0.017	1750	0.001			
SHP IA-PST-AGGR AA384 7/10 1603 0208 605 3.3 1996.5 31185 0.016 25000 0.013 SHP IA-PST-AGGR AA42 7/10 1603 0208 605 3.0 1815.0 72765 0.040 0.029 23000 0.011 40040 0.022 SHP IA-PST-AGGR AA451 7/10 1603 0208 605 3.5 2117.5 60445 0.029 23000 0.011 63270 0.030 SHP IA-PST-AGGR H848 7/10 1603 0208 605 3.5 2117.5 94050 0.044 0.025 45000 0.025 43520 0.030 SHP IA-PST-AGGR H848 7/10 1603 0208 605 3.5 2117.5 94050 0.044 0.025 45000 0.025 43520 0.023 SHP IA-PST-AGGR MA455 7/10 1603 0208 605 3.5 2117.5 32147 0.015 5390 0.002 SHP IA-PST-AGGR AA	3 12 16	OA-PST-BACR	AA437 7/10	0843 1655	492 3.1	1525.2	45045	0.030	1500	0.001			
38HP IA-PST-AGGR AA42 7/10 1603 0208 605 3.0 1815.0 72765 0.040 40040 0.022 38HP IA-PST-AGGR AA451 7/10 1603 0208 605 3.5 2117.5 60445 0.029 23000 0.011 63270 0.030 38HP IA-PST-AGGR HB48 7/10 1603 0208 605 3.5 2117.5 64125 0.030 0.025 45000 0.025 3390 0.030 38HP IA-PST-AGGR HB48 7/10 1603 0208 605 3.5 2117.5 94050 0.044 43520 0.025 38HP IA-PST-AGGR AA455 7/10 1603 0208 605 3.5 2117.5 32147 0.015 5390 0.003 38HP IA-PST-AGGR AA455 7/10 1603 0208 605 3.5 2117.5 32147 0.015 5390 0.003 38HP IA-PST-MAGR AA455 7/10 0.645 1655 490 3.1 151	392F	IA-PST-AGGR	M384 7/10	1603 0208	605 3.3	1995.5	31185	0.016	25000	0.013			
38HF IA-PST-AGGR AA451 7/10 1603 0206 605 3.5 2117.5 60445 0.029 23000 0.011 38HF IA-PST-AGGR HB45 7/10 1603 0208 605 3.5 2117.5 604125 0.030 63270 0.030 38HF IA-PST-AGGR HB45 7/10 1603 0208 605 3.5 2117.5 64125 0.030 0.044 43520 0.021 38HF IA-PST-AGGR HB45 7/10 1603 0208 605 3.5 2117.5 94050 0.044 43520 0.021 38HF IA-PST-MAGR AA455 7/10 1603 0208 605 3.5 2117.5 32147 0.015 5390 0.003 38HF IA-PST-MAGR AA450 7/10 0845 1655 490 3.1 1519.0 35825 0.037 750 0.000 38HF IA-PST-MAGR AA464 7/10 0845 1655 490 3.4 1666.0 79515 0.046 2992 0.002	322	IA-PST-AGR	AA442 7/10	1603 0208	605 3.0	1815.0	72765	0.040			40040	0.022	
328+F IA-FST-AGGE M845 7/10 1603 0208 605 3.5 2117.5 64125 0.030 63270 0.030 328+F IA-FST-AGGE M848 7/10 1603 0208 605 3.5 2117.5 94050 0.044 43320 0.025 328+F IA-FST-AGGE M849 7/10 1603 0208 605 3.5 2117.5 94050 0.044 43520 0.025 328+F IA-FST-AGGE AA455 7/10 1603 0208 605 3.5 2117.5 32147 0.015 45000 0.025 328+F IA-FST-AGGE AA455 7/10 1603 0208 605 3.5 2117.5 32147 0.015 5390 0.002 328+F IA-FST-AGGE AA455 7/10 0845 1655 490 3.1 1519.0 53825 0.037 750 0.000 3697 0.000 3697 0.001 3698 0.022 750 0.000 3697 0.001 3698 0.022 750 0.001 365	30F	IA-PST-AGER	AA451 7/10	1603 0208	605 3.5	2117.5	60445	0.029	23000	0.011			
38PF IA-PST-AGGR MB48 7/10 1603 0208 605 3.0 1815.0 45315 0.025 46000 0.025 38PF IA-PST-AGGR MB49 7/10 1603 0208 605 3.5 2117.5 94050 0.044 43520 0.021 38PF IA-PST-AGGR AA455 7/10 1603 0208 605 3.5 2117.5 32147 0.015 5390 0.003 38PF IA-PST-AGGR AA455 7/10 0645 1655 490 3.1 1519.0 55625 0.037 750 0.000 2992 0.002 38PF IA-PST-BAGR AA430 7/10 0845 1655 490 3.1 1519.0 33880 0.022 750 0.000 2992 0.002 38PF IA-PST-BAGR M844 7/10 0845 1655 490 3.4 1566.0 79515 0.048 2992 0.002 38PF IA-PST-BAGR M851 7/10 0845 1655 490 3.4 15666.0 7210 <th>327</th> <td>IA-PST-AGGR</td> <td>MB45 7/10</td> <td>1603 0208</td> <td>805 3.5</td> <td>2117.5</td> <td>64125</td> <td>0.030</td> <td></td> <td></td> <td>63270</td> <td>0.030</td>	327	IA-PST-AGGR	MB45 7/10	1603 0208	805 3.5	2117.5	64125	0.030			63270	0.030	
SEPF IA-PST-AGGR H849 7/10 1603 0208 605 3.5 2117.5 94050 0.044 43520 0.021 SEPF IA-PST-AGGR AA455 7/10 1603 0208 605 3.5 2117.5 94050 0.044 43520 0.033 SEPF IA-PST-AGGR AA455 7/10 0845 1655 490 3.0 1470.0 94710 0.064 3465 0.002 SEPF IA-PST-BAGR AA430 7/10 0845 1655 490 3.1 1519.0 55625 0.037 750 0.000 2992 0.002 SEPF IA-PST-BAGR M446 7/10 0845 1655 490 3.1 1519.0 33880 0.022 750 0.000 2992 0.002 3287 IA-PST-BAGR M446 7/10 0845 1655 490 3.4 1566.0 79515 0.048 2992 0.002 3287 IA-PST-BAGR M423 7/10 0845 1655 490 3.4 15666.0 84645 0.051 1750	381 F	IA-PST-AGGR	195 48 7/10	1603 0208	605 3.0	1815.0	45315	0.025	46000	0.025			
32HF OA-PST-AGCR AA455 7/10 1603 0208 605 3.5 2117.5 32147 0.015 5390 0.003 32HF IA-PST-HACR AA429 7/10 0645 1655 490 3.0 1470.0 94710 0.064 3465 0.003 32HF IA-PST-HACR AA430 7/10 0845 1655 490 3.1 1519.0 53625 0.037 750 0.000 3465 0.022 750 0.000 2992 0.002 32HF IA-PST-HACR AA436 7/10 0845 1655 490 3.4 1566.0 7951.5 0.048 2992 0.002 32HF IA-PST-HACR M844 7/10 0845 1655 490 3.5 1715.0 87210 0.051 1750 0.001 2992 0.002 32HF IA-PST-HACR M850 7/10 0843 1655 490 3.4 1666.0 84645 0.051 1750 0.001 3147 0.001 3F FB-PST-7/18 AA423 7/10 <th>32F</th> <td>IA-PST-AGER</td> <td>MB49 7/10</td> <td>1603 0208</td> <td>605 3.5</td> <td>2117.5</td> <td>94050</td> <td>0.044</td> <td></td> <td></td> <td>43520</td> <td>0,021</td>	32F	IA-PST-AGER	MB49 7/10	1603 0208	605 3.5	2117.5	94050	0.044			43520	0,021	
32PF IA-PST-BAGR AA429 7/10 0845 1655 490 3.0 1470.0 94710 0.064 3465 0.002 33PF IA-PST-BAGR AA430 7/10 0845 1655 490 3.1 1519.0 55625 0.037 750 0.000 2992 0.002 33PF IA-PST-BAGR AA436 7/10 0845 1655 490 3.1 1519.0 33880 0.022 750 0.000 2992 0.002 32PF IA-PST-BAGR M844 7/10 0845 1655 490 3.4 1566.0 79515 0.048 2992 0.002 32PF IA-PST-BAGR M850 7/10 0845 1655 490 3.4 1566.0 79515 0.048 2992 0.002 32PF IA-PST-BAGR MA423 7/10 0845 1655 490 3.4 1566.0 84645 0.051 1750 0.001 1347 32PF IA-PST-FAGR AA423 7/10 0843 1655 492 3.0 1476.0	32F	OA-PST-AGGR	AA455 7/10	1603 0208	605 3.5	2117.5	32147	0.015			5390	0.003	
338HF JA-PST-HAGR AA430 7/10 0845 1655 490 3.1 1519.0 55825 0.037 750 0.000 338HF JA-PST-HAGR AA436 7/10 0845 1655 490 3.1 1519.0 33880 0.022 750 0.000 38HF JA-PST-HAGR M846 7/10 0845 1655 490 3.4 1666.0 79515 0.048 2992 0.002 38HF JA-PST-HAGR M850 7/10 0845 1655 490 3.4 1666.0 79515 0.048 2992 0.001 38HF JA-PST-HAGR M850 7/10 0845 1655 490 3.4 1666.0 84645 0.051 1750 0.001 38HF JA-PST-HAGR MA423 7/10 0843 1655 490 3.4 1666.0 84645 0.051 1750 0.001 38HF JA-PST-HAGR MA423 7/10 0843 1655 492 3.0 1476.0 46585 0.032 1347 2992 2992 <th>3877</th> <td>IA-PST-RAGR</td> <td>AA429 7/10</td> <td>0845 1655</td> <td>490 3.0</td> <td>1470.0</td> <td>94710</td> <td>0.064</td> <td></td> <td></td> <td>3465</td> <td>0.002</td>	3877	IA-PST-RAGR	AA429 7/10	0845 1655	490 3.0	1470.0	94710	0.064			3465	0.002	
380 F JA-PST-HAGR AA436 7/10 0845 1655 490 3.1 1519.0 33880 0.022 750 0.000 380 F JA-PST-HAGR M844 7/10 0845 1655 490 3.4 1666.0 79515 0.048 2992 0.002 380 F JA-PST-HAGR M850 7/10 0845 1655 490 3.4 1666.0 79515 0.048 2992 0.002 380 F JA-PST-HAGR M850 7/10 0845 1655 490 3.4 1666.0 87210 0.051 1750 0.001 380 F JA-PST-HAGR MA23 7/10 0843 1655 492 3.0 1476.0 46585 0.032 1347 0.001 380 F DA-PST-HAGR AA423 7/10 0843 1655 492 3.0 1476.0 46585 0.032 1347 347 0.001 387 B FB-PST-7/18 M955 7/10 2992 2992 2992 2992 2992 2992 2992 2992 2992 <th>382F</th> <td>IA-PST-HAGR</td> <td>AA430 7/10</td> <td>0845 1655</td> <td>490 3.1</td> <td>1519.0</td> <td>55825</td> <td>0.037</td> <td>750</td> <td>0.000</td> <td></td> <td></td>	382F	IA-PST-HAGR	AA430 7/10	0845 1655	490 3.1	1519.0	55825	0.037	750	0.000			
38PF JA-PST-HAGR MB44 7/10 0845 1655 490 3.4 1666.0 79515 0.048 2992 0.002 38PF JA-PST-HAGR MB50 7/10 0845 1655 490 3.5 1715.0 87210 0.051 1750 0.001 38PF JA-PST-HAGR MB50 7/10 0845 1655 490 3.4 1666.0 84645 0.051 1750 0.001 38PF JA-PST-HAGR MA23 7/10 0843 1655 492 3.0 1476.0 46585 0.032 1347 0.001 38PF PB-PST-7/18 AA423 7/10 0843 1655 492 3.0 1476.0 46585 0.032 1347 0.001 3FB FB-PST-7/18 AA479 7/10 0843 1655 492 3.0 1476.0 46585 0.032 1347 2992 2992 2992 2992 2992 2992 2992 2992 2992 2992 2992 2992 2992 2992 2992 2992	360 P	IA-PST-BACR	AA436 7/10	0845 1655	490 3.1	1519.0	33880	0.022	750	0.000			
38HF JA-PST-HAGR MB50 7/10 0845 1655 490 3.5 1715.0 87210 0.051 1750 0.001 38HF JA-PST-HAGR MB51 7/10 0845 1655 490 3.4 1666.0 84645 0.051 1750 0.001 38HF JA-PST-HAGR MA23 7/10 0843 1655 492 3.0 1476.0 46585 0.032 1347 0.001 38HF CA-PST-HAGR AA423 7/10 0843 1655 492 3.0 1476.0 46585 0.032 1347 0.001 38HF CA-PST-HAGR AA479 7/10 0843 1655 492 3.0 1476.0 46585 0.032 1347 0.001 38HF FB-PST-7/18 M955 7/10 10549 1347 2992	367 E	IA-PST-RAGR	19844 7/10	0845 1655	490 3.4	1666.0	79515	0.048			2992	0.002	
38HF IA-PST-HAGR H851 7/10 0845 1655 490 3.4 1666.0 84645 0.051 1750 0.001 38HF 0A-PST-HAGR AAA23 7/10 0843 1655 492 3.0 1476.0 46585 0.032 1347 0.001 38HF 0A-PST-HAGR AAA23 7/10 0843 1655 492 3.0 1476.0 46585 0.032 1347 0.001 38HF DA-PST-F/18 AAA79 7/10 10549 1347 2992 <	3874	IA-PST-HAGR	MB50 7/10	0845 1655	490 3.5	1715.0	87210	0.051	1750	0.001			
3BHF 0A-PST-HAGR AAA23 7/10 0843 1655 492 3.0 1476.0 46585 0.032 1347 0.001 3FB FB-PST-7/18 AAA79 7/10 10549 10549 1347 2992	3847	IA-PST-HAGR	MB51 7/10	0845 1655	490 3.4	1666.0	84645	0.051	1750	0.001			
37B PB-PST-7/18 AA479 7/10 10549 1347 37B PB-PST-7/18 M955 7/10 2992 2992 37B PB-PST-7/18 M956 7/10 2992 2992 37B PB-PST-7/18 M956 7/10 2992 2992 37B PB-PST-7/18 M960 7/10 17955 2992 37B PB-PST-7/18 M960 7/10 0854 0325 1111 3.0 3333.0 227150 0.068 750 0.000 31JBG AM-PST-FTM AA460 7/10 0854 0325 1111 2.9 3221.9 217910 0.068 750 0.000	3DF	CA-PST-HAGR	AA423 7/10	0643 1655	492 3.0	1476.0	46585	0.032			1347	0.001	
3FB FB-PST-7/18 M955 7/10 2992 2992 3FB FB-PST-7/18 M956 7/10 2992 2992 3FB FB-PST-7/18 M960 7/10 17955 2992 3LNG AM-PST-FTM AA452 7/10 0854 0325 1111 3.0 3333.0 227150 0.068 750 0.000 3LNG AM-PST-FTM AA460 7/10 0854 0325 1111 2.9 3221.9 217910 0.068 750 0.000	3FB	FB-PS1-7/18	AA479 7/10				10549				1347		
3PB PB-PS1-7/18 M956 7/10 2992 2992 3PB PB-PS1-7/18 M960 7/10 17955 2992 3LBG AM-PS1-FTM AA452 7/10 0854 0325 1111 3.0 3333.0 227150 0.068 750 0.000 3LBG AM-PS1-FTM AA460 7/10 0854 0325 1111 2.9 3221.9 217910 0.068 750 0.000	3FB	FB-PST-7/18	M955 7/10				2992				2992		
3PB PB-PST-7/15 M960 7/10 2992 3LBG AM-PST-FTM AA452 7/10 0854 0325 1111 3.0 3333.0 227150 0.068 750 0.000 3LBG AM-PST-FTM AA460 7/10 0854 0325 1111 2.9 3221.9 217910 0.068 750 0.000	3PB	FB-PST-7/18	M956 7/10				2992				2992		
3LNG AM-PST-FTM AA452 7/10 0854 0325 1111 3.0 3333.0 227150 0.068 750 0.000 3LNG AM-PST-FTM AA460 7/10 0854 0325 1111 2.9 3221.9 217910 0.068 750 0.000	3PB	FB-PST-7/18	M960 7/10				17955				2992		
3LJIG AM-PST-FIM AA460 7/10 0854 0325 1111 2.9 3221.9 217910 0.068 750 0.000	3LJIG	AM-PST-FTM	AA452 7/10	0854 0325	1111 3.0	3333.0	227150	0.068	750	0.000			
	3LJIG	AM-PST-FTM	AA460 7/10	0854 0325	1111 2.9	3221.9	217910	0.068	750	0.000			

TABLE B4-1

LEGEND FOR FACILITY 4 PCM DATA

LOC (Faci	lity and room location of sampled activity)
4xxx	Facility 4
RMH	Room H
RMI	Room I
RMJ	Room J
CE	Combined Exposure Areas Room H and Room I
PO	Principle's Office
SAMPLE CLASS Location	(Sample type and location, activity, and ID)
FB	Field Blank
IA	Interior Area (Background in the work room)
OA.	Outside Area (in the hall)
MA	Ambient (Outside the building)
BZ	Personal Breathing Zone
СТ	Mobile Sampling Cart (proximate to work activity)
Activity	
PRE	Pre-removal activity - Full term sample
PST	Post-removal activity - Full term sample
REM	Removal work - Full term sequential sample
COA	Preperation - Full term sequential
RMS	Removal work - 15 minute short term PBZ sample
COS	Preperation - 15 minute short term BZ
SEQ	Sample period covers sequential work activities
FTM	Ambient Sample - Full Term Monitoring; 8 to 16 hours
ID	• •
AGGR	Aggressive sampling mode
NAGR	Nonaggressive sampling mode
WK# <u>X</u>	Worker #X BZ sample
	Date of blank
SAMPLE No.	Sample media Identification code and number
AA <u>xxx</u>	25mm Cellulose Ester Filter Sample Number xxx (using a
	foil wrapped 2-inch cowl)
M <u>xxx</u>	37mm Cellulose Ester Filter Sample Number xxx
N <u>xxx</u>	37mm Polycarbonate Filter Sample Number xxx
RATE	Sample flow rate in liters per minute (1pm)
VOL	Sample volume in liters (1)
MAGISCAN II	Magiscan II is a computerized image analysis system for PCM; results are in total fibers per cubic centimeter.
Phase Contrast	<u>Microscopy using NIOSH Method 7400B counting rules</u>
UBTL.	PCM analysis performed by Utah Biological Testing Labs
NIOSH	PCM analysis performed in the NIOSH Laboratory
Fibers	Total fibers
f/cc	Fibers/cubic centimeter

TABLE B4-2

	HASE CONTRAST MICROSCOPY ANALYTICAL RESULTS								MOTE: For samples reported less than detectable,					
		POR	AIRTOR	në asbe	STOS A	HALLIST	5		90	• half of	the limi	t of det	ection is	used
				FACILIT	T 4				86	follows:	<u> 145 25</u>	Pilt	<u>er 37 m l</u>	<u>ilter</u>
		.	C11		, 12110							750	1/3	~ •0
				e July	15-10,	1983					11050	134/	4.81	44
		SAM	PLE .	PER	100	TIME	BATE	VCL.	MAGISC		105	π.	WIC	5
LCC.	SAMPLE CLASS	No.	Dete	Start	Stop	(min)	(1m)		Fibers_	1/cc	Fibers	1/55	Fibers	1/90
	IA-FRE-AGGR	AA393	7/12	1800	0201	481	2.50	1202.5	43505	0.036	12000	0.010		
4841	IA-PRE-AGGR	AA401	7/12	1800	0201	481	2.75	1322.8	57750	0.044			1347	0,001
4991	IA-PRE-AGER	AA448	7/12	1800	0201	481	2.50	1202.5	46970	0.039	10000	800.0		
	IA-PRE-AGGR	M664	7/12	1800	0201	481	2.75	1322.8	53950	0.041			24966	0.019
	IA-PRE-AGGR	HB71	7/12	1800	0201	481	3.00	1443.0	47965	0.033	20000	0.014		
40711	TV-LAC-WYSK	HB/2	//12	1900	0201	481	Z./5	1322.8	80760	0.0/2				
4801	OA-PRE-AGGR	AA427	7/12	1800	0201	481	3.00	ME43.0	17671	0.012	2000	0.001		
48041	IA-PRE-BAGR	AA405	7/12	0906	1700	474	2.60	1232.4	31993	0.026	2000	0.002		
48041	IA-PRE-KAGR	44406	7/12	0906	1700	474	2.70	1279.8	33841	0.026		-	1347	0.001
4201	IA-PRE-MAGR	AA444	7/12	8906	1700	474	3.15	1493.1	32147	0.022			4158	0.003
4891	IA-FRE-BAGR	HB 57	7/12	0906	1700	474	3.00	1422.0	49077	0.035	3500	0,002		
42241	IA-PEC-BACK	MB65	7/12	0906	1700	474	3.15	1493.1	16208	0.011	1750	0.001		
4891	IA-FEZ-MAGR	MB6 9	7/12	0906	1700	474	2.95	1396.3	47965	0.034	1750	0.001		
42241	QA-PRE-HAGR	AA397	7/12	0905	1700	475	3.05	1448.8	279 89	0.019	750	0.001		
482481	IA-PRZ-AGGR	AA394	7/12	1752	0152	480	2.50	1190.0	43890	0.037	5000	0.005		
41242	IA-PRE-AGGR	AA399	7/12	1752	0152	480	3.00	1428.0	50435	0.035			1347	0.001
4324	IA-FRE-AGGR	A4407	7/12	1752	0152	480	2.75	1309.0	40040	0.031	4000	0.003		
43948	IA-PRE-AGER	HB67	7/12	1752	0152	480	3.00	1425.0	55062	0.039			2982	0,002
	LA-PAL-AGEK		7/12	1752	0152	450	2./3	1429.0	23820	0.097			2007	0.013
40711	la-rke-mask	mp/3	// 14	1/34	0135	400	3.00	1420.0	38244	0.027			7901	V. WZ
432461	QA-FEZ-AGGR	A A404	7/12	1752	0152	480	3.00	1428.0	15939	0.011			1347	0.001
43246	IA-PRE-BACK	AA402	7/12	0904	1700	476	3.00	1428.0	21098	0.015	750	0.001		
43948	IA-PRE-MAGR	AA409	7/12	0904	1700	476	2.70	1285.2	16208	0.013	750	0.001		
ATC: E	IA-PRE-BAGR	AA426	7/12	0904	1700	476	2.60	1237.6	23793	0.019			1347	0.001
ARME	IA-FRE-HAGR	MB56	7/12	0904	1700	476	2.95	1404.2	36508	0.026			2992	0.002
ARME	IA-PRE-MAGR	M874	7/12	0904	1700	476	2.90	1380.4	38133	0.028	1750	0.001		
4RME	IA-PRE-RACK	MB75	7/12	0904	1700	476	3.00	1428.0	47367	0.033			2992	0.002
42245	QA-PRE-RAGR	AA396	7/12	0904	1700	476	3.00	1428.0	64295	0.045			36575	0.026
AFB	FB-PRE-7/12	MB63	7/12						53266		1750			
APB	78-PRE-7/12	MB66	7/12						9832		1750			
AFB	FB-PRE-7/18	M962	7/12						47965		1750		2002	
APD	FD-PHE-7/18	MDC4	7/12						2/018		1764		2392	
42 D	20~235~//10 78+997-7/14	MOG 5	7/12						7609		71.30		2992	
-1E ()	20-1m2-//10	1903	· / 14						/008				2048	
4PO		AA400	7/12	0915	0230	1035	2.90	3001.5	43120	0.014	750	0.000		
APO		AA456	//12	9915	0230	1035	3.00	3105.0	36269	0.012			3908	0.001

TABLE B4-2 (Continued - page 2)

		SAMPLE	PERIOD	TRE B	ATE	VOL.	MAGISCAN II	UBT	<u>L</u>	110	M
ю¢.	<u>SAMPLE CLASS</u>	No. Date	Start Stop	<u>(min) (</u>	(<u>lpm)</u>	<u>(1)</u>	Fibers f/cc	Fibers	f/cc	<u>Fibers</u>	<u></u>
ARMI	BZ-COS-WK#1	AA471 7/15	0842 0902	20 2	2.50	50.0		750	0.015		
42241	BZ-COS-WK/2	AA503 7/15	0822 0837	15 3	1.70	55.5		750	0.014		
4846	BZ-COS-WEA4	AA500 7/15	0938 0953	15 3	.20	48.0		750	0.016		
43245	BZ-REM-WEAT	AA465 7/15	1045 1245	120 2	2.75	330.0		6000	0.015		
	BZ- <u>PP</u> -WSZ	AA404 //15	1045 1252	127 3	3.20	400.4 366 A		2000	0.015		
	BC-KET-WEFS	AA466 7/15	1043 1245	121 3		300.0		6000	0.003		
	87-204C-147-51	AA400 7/13	1326 1341	15 2	1 10	3.4.5		750	0 022		
	BC-3255-44671 BZ-5245-44642	AAA77 7/15	1306 1321	15 3	1.15	47.3		1500	0.032		
ARME	BZ-BAS-MK43	AA470 7/15	1108 1123	15 3	3.10	46.5		2000	0.043		
ARME	BZ4ENS-WE43	AA511 7/15	1345 1355	10 3	3.20	32.0		750	0.023		
42241	BZ-HPS-WEA	AA461 7/15	1357 1410	13 3	8.20	41.6		1500	0.036		
4RME	CT-COV	AA473 7/15	0755 1045	170 3	3.10	527.0		3000	0.005		
4RHE	CI-COV	AA510 7/15	0755 1045	170 3	3.10	527.0		3000	0.005		
ARME	CT-REM	AA474 7/15	1045 1243	118 3	3.10	365.8		3000	0.008		
412421	CT-302M	AA490 7/15	1045 1243	118 3	5.00	354.0		2000	0.000		
4824E	IA-COV	AA495 7/15	0755 1045	170 3	3.20	544.0		7000	0.013		
4RMEI	IA-COV	AA508 7/15	0755 1045	170 3	3.25	552.5		1500	0.003		
4 RMEI	IA-REM	AA497 7/15	1045 1241	116 3	3.30	382.8		2000	0.005		
432461	IA-REM	AA498 7/15	1045 1241	116 3	3.20	371.2		3000	0.008		
ARME	OA-REM	AA476 7/15	1048 1243	115 3	3.30	379.5		750	0.002		
ARMEI	QA-REM	AA507 7/15	1048 1243	115 3	3.30	379.5		750	0.002		
4CE	BZ-COV-WK#1	AA506 7/15	0810 1045	155 2	2.80	434.0		2000	0.005		
4CE	BZ-COV-WK#2	AA514 7/15	0811 1045	154 3	3.20	492.8		3000	0.006		
4CE	BZ-COV-HK#3	AA468 7/15	0811 1030	139 2	2.80	389.2		750	0.002		
4CE	BZ-COV-NEA	AA472 7/15	0811 1044	153 3	3.20	489.6		5000	0.010		
4CE	OA-COV	AA504 7/15	0755 1045	170 3	3.20	544.0		750	0.001		
4CE	OV-COA	AA509 7/15	0755 1045	170 3	3.20	544.0		750	0.001		
APB	FB-COV-7/18	AA525 7/15						750			
AFB	FB-REH-7/18	AA545 7/15						750			
420	AM-FTM	AA467 7/15	0816 1420	364 3	3.00	1092.0		750	0.001		
4PO	AM-PTH	AA469 7/15	0816 1420	364 2	2.90	1055.6		750	0.001		
ARMI	BZ-REM-WK#1	AA411 7/16	0756 1130	214 3	3.20	684.8		10000	0.015		
ARMI	BZ-REM-WK#2	AA489 7/16	0756 1130	214 3	3.15	674.1		9000	0.013		
4RMI	BZ-REH-WK#3	AA491 7/16	0756 1130	214 3	3.00	642.0					
ARMI	BZ-RMS-WK#1	AA485 7/16	0959 1014	15 3	3.20	48.0		750	0.016		
	BZ-BPS-WK#Z	AA483 7/16	0824 0839	15 3	3.10	46.0		3000	0.005		
ARMI	BZ-RMS-WK/3	AA486 7/16	0941 0956	15 3	3.10	46.5		4000	0.086		
	(7) (3)		A7/6 4444			e74 A					
48711	CT-1024	AA480 7/16	0745 1130	223 3	3.00	675.0		0000	0 013		
4011	UT-KEM	011/ CUCAA	0745 1130	223 3	3.00	8/3.0		9000	0.013		
4841	IA-REM	AA475 7/16	0756 0822	26 3	3.00	78.0		4000	0.051		
ARMI	IA-REM	AA487 7/16	0745 1130	225 3	3.20	720.0					
4 ICHI	IA-REM	AA488 7/16	0745 1130	225 3	3.20	720.0		8000	0,013		
ARMI	QA-REM	AA462 7/16	0743 1130	227 3	3.20	726.4		2000	0.003		
43245	CA-REM	AA463 7/16	0743 1130	227 3	3.40	771.8		750	0.001		
AFB	FB-REM-7/18	AA554 7/16						750			
APB	FB-REM-7/18	AA555 7/16						750			
400	404-17Th4	AAA07 7/16	0737 1336	348 4	2 84	974 4		750	0 001		
4P0	AM-FIM	AA499 7/16	0737 1325	348 2	2.90	1009.2		750	0.001		

fAHLE B4-2 (Continued - page 3)

		SAPPLE	127	IOD	THE	BATE	VUL.	MAGISCAN II		L		SE .
LOC.	SAMPLE CLASS	<u>No. De</u>	te <u>Start</u>	Stop	(min)	(128)	<u>(1)</u>	Fibers f/cc	Fibers	<u></u>	Fibers	<u></u>
ARMJ	BZ-B2H-WK#1	AA502 7/	17 0924	1133	129	2.95	380.6		750	0.002		
4RMJ	BZ-BEH-WK#1	AA536 7/	17 1243	1343	60	2.90	174.0		4000	0.023		
ARMJ	BZ-REM-WK#2	AA515 7/	17 1040	1341	181	3.15	570.2		3000	0.005		
ARMIT	BZ-BEH WK#3	AA482 7/	17 0922	1133	131	3.00	393.0		1500	0.004		
ARMJ	BZ-REN-WK43	AA544 7/	17 1243	1340	57	3.10	176.7		3000	0.017		
4 HHL	BZ-BEN-WK44	AA496 7/	17 1238	1343	65	3.10	201.5		2000	0.010		
4IPLT	BZ-B-5-44-1	AA528 7/	17 1313	1328	15	3.00	45.0		750	0.017		
ABHJ	BZ-BS-WE/1	AA535 7/	17 0936	0951	15	3.05	45.8		750	0.016		
ARMU	BZ-BS-HL/2	AA543 7/	17 1332	1340	8	2.75	22.0		750	0.034		
4 ROLL	BZ-BPS-WK/3	AA527 7/	17 1100	1115	15	3.00	45.0		750	0.017		
4RMJ	BZ-186-1843	AA532 7/	17 0956	1011	15	3.20	48.0		750	0.015		
4BMJ	BZ-1845-48644	AA542 7/	17 1257	1312	15	3.05	45.8		2000	0.044		
ABMJ	CT-REM	AA478 7/	17 0730	1134	244	3.10	756.4		4000	9.005		
ATENI	CT-REM	AA481 7/	17 0730	1134	244	3.00	732.0		750	0.001		
4504J	CT-REM	AA521 7/	17 1240	1341	61	3.20	195.2		750	0.004		
4 Remj	CT-REM	AA537 7/	17 1240	1341	61	3.30	201.3		1500	0.007		
ARMJ	IA-REM	M512 7/	17 0730	1134	244	3.15	768.6		5000	0.007		
AIRAJ	IA-REM	AA516 7/	17 0730	1134	244	3.10	756.4		1500	0.002		
42HJ	IA-REM	AA517 7/	17 1240	1341	61	3.10	189.1		2000	0.011		
422HJ	IA-REM	AA519 7/	17 1240	1341	61	3.40	207.4		750	0.004		
4EMJ	OA-REM	AA493 7/	17 0730	1134	244	3.40	829.6		750	0.001		
ATEMI	CA-REM	AA513 7/	17 0730	1134	244	3.30	805.2		750	0.001		
AIHJ	OA-REM	AA526 7/	17 1240	1341	61	3.40	207.4		750	0.004		
4RMJ	CA-REM	AA534 7/	17 1240	1341	61	3.30	201.3		750	0.004		
478	FB-REM-7/18	AA558 7/	17						750			
4 F B	PB-REM-7/18	AA562 7/	17						750			
4 P O	M-FTH	AA529 7/	17 0745	1411	386	3.00	1158.0		750	0.001		
4PO	AH-FIN	AA540 7/	17 0745	1411	386	2.90	1119.4		750	0.001		

TABLE B4-2 (Continued - page 4)

		SAMPLE	PERIOD	TIME RATE	VOL.	MAGISCA	<u> 11 N</u>	UE	L	110	<u>BB</u>
<u>LOC.</u>	SAMPLE CLASS	No. Date	Start Stop	(min) (1m)	$\overline{\mathbf{u}}$	Fibers	<u>t/cc</u>	Fibers	1/00	Fibers	f/cc
432411	IA-PST-AGGR	AA538 7/18	1638 2440	482 3.50	1687.0	85085	0.050	7000	0.004		
ARMI	IA-PST-AGGR	AA552 7/18	1638 2440	482 3.25	1566.5	94710	0.060	5000	0.003		
ARMI	IA-PST-AGGR	AA553 7/18	1638 2440	482 3.25	1566.5	51590	0.033	3000	0.002	10395	0.007
4891	IA-PST-AGGR	M958 7/18	1638 2440	482 3.50	1687.0	41040	0.024	9000	0.005		
ARMI	IA-PST-AGGR	M968 7/18	1638 2440	482 3.00	1446.0	73102	0.051	1750	0.001	2992	0.002
ARMI	IA-PST-AGGR	M969 7/18	1638 2440	482 3.50	1687.0	129105	0.077	7000	0.004		
ARMI	QA-PST-AGER	AA557 7/18	1645 2440	475 3.25	1543.8	54285	0.035	750	0.000		
ARMI	LA-PST-MAGR	AA549 7/18	0727 1530	483 3.20	1545.6	54285	0.035	1500	0.001	7315	0.005
41242	IA-PST-BAGR	AA559 7/18	0727 1530	483 3.10	1497.3	43120	0.029	750	0.001		
AIHI	IA-PST-RAGE	AA560 7/18	0727 1530	483 3.20	1545.6	31185	0.020	2000	0.001		
47241	IA-PST-BACR	19957 7/18	0727 1530	483 3.15	1521.5	54720	0.036	1750	0.001	2992	0.002
ARMI	IA-PST-HACE	M959 7/18	0727 1530	483 3.50	1690.5	50445	0.030	3500	0.002		
	IA-PST-MAGR	1973 7/18	0727 1530	483 3.50	1690.5	69939	0.041	3500	0.002	2992	0.002
42242	QA-PST-HAGR	AA548 7/18	0727 1530	483 3.05	1473.2	45045	0.031	4000	0.003	7893	0.005
4 224 2	IA-PST-AGGR	AA523 7/18	1625 2435	490 3,50	1715.0	97405	0.057	3000	0.002	1347	0.001
430451	IA-PST-AGER	AA551 7/18	1625 2435	490 3.00	1470.0	165550	0.113	4000	0.003		
41242	IA-PST-AGER	AA566 7/18	1625 2435	490 3.25	1592.5	60060	0.038	2000	0.001		
4EME	IA-PST-AGGR	M961 7/18	1625 2435	490 3.50	1715.0	29925	0.017	3500	0.002		
430461	IA-PST-AGGR	M966 7/18	1625 2435	490 3,00	1470.0	34200	0.023	5000	0,003		
41241	IA-PST-AGER	M974 7/18	1625 2435	490 3,50	1715.0	50530	0.029	1750	0.001		
4248	QA-PST-AGGR	AA556 7/18	1625 2435	490 3,00	1470.0	99330	0.068	2000	0.001	6160	0.004
4 RMEI	IA-PST-BACR	AA550 7/18	0726 1530	484 3.25	1573.0	8701	0.006	750	0.000	8701	0.005
41241	IA-PST-HAGR	AA563 7/18	0726 1530	484 3.15	1524_6	48895	0.032	750	0.000		
4324E	IA-PST-HAGR	AA565 7/18	0728 1530	482 2,90	1397.8	77385	0.055	750	0.001		
4324E	IA-PST-HAGE	M952 7/18	0728 1530	482 3,00	1446.0	29070	0.020	1750	0.001	11115	800.0
41041	IA-PST-HAGR	M967 7/18	0726 1530	484 3.20	1548.8	29925	0.019	1750	0.001		
41241	IA-PST-HAGR	M970 7/18	0726 1530	484 3.40	1645.6	73102	0.044	1750	0.001	2992	0.002
43245	QA-PST-HACE	AA564 7/18	0728 1530	482 3,10	1494.2	78155	0.052	750	0.001		
4PB	FB-PST-7/18	AA520 7/18				16940		750			
4FB	FB-PSI-7/18	AA524 7/18				5813					
4FB	FB-PST-7/18	M971 7/18				3249		1750			
4PB	FB-FST-7/18	M972 7/18				4275		1750			
4 P O	AM-PTM	AA547 7/18	0729 2435	1026 3.00	3078.0	108185	0.035	750	0.000		
4 P O	AM-FIM	AA561 7/18	0729 2435	1026 2.90	2975.4	45045	0.015	2000	0.001		

-

APPENDIX C

TABULATION OF DATA OBTAINED USING

TRANSMISSION ELECTRON MICROSCOPY (TEM)

Sample		St.	ructures/	CC		Asbesto	x struct	ures/cc		F 1	bers/cc	
Humber	Total	<u>Honasbestos</u>	Asbestos	Chrysotile	(mphibole	Metrix	Cluster	Bundle	Total	Asbestos	Chrysotile	Amphibole
				:	FRE-REMOVAL	- Homa	gressive					
+#-373	0.200	0.104	0.096	880.0	800.0	-	-	0.016	0.184	0.080	0.072	8.00.0
+#-375	0.095	0.043	0.052	0.026	0.025	-	-	-	0.087	0.052	0.026	0.026
+#-376	0.576	0.456	0.120	0.056	0.064	-	800.0	_	0.560	0.112	0.048	0.064
*#-363	0.048	0.006	0.040	0.032	0.008	-	-	0.016	0.032	0.024	0.018	0.008
-1-367	0.095	0.008	0_087	0.080	0.005	-	0.005	0.016	0.072	0.064	0.056	0.008
*≣ -371	0.078	0.009	0.069	0.034	0.034	-	-	0.009	0.060	0.060	0.025	0.034
Ave	0.182	0.105	0.077	0.053	0.825				 0.166	0.965	0.041	 0_025
						T - A						
+#-360	0.935	0.780	0.156	0.078	0.078	0.009	-	0.009	0.867	0.139	0.061	0.078
+3-369	0.440	0.328	0.112	0.088	0.024	-	800.0	0.016	0.408	0.068	0.064	0.024
+#-374	1.333	1.174	0.160	0.120	0.040	-	-	-	1.280	0,160	0.120	0.040
*# -316	0.528	0.237	0.292	0.229	0.063	0.032	-	0.016	0.457	0.229	0.166	0.063
• 1 -359	0.386	0.158	0_229	0.173	0.055	0.024	-	-	0.315	0.166	0.110	0.055
*# -372	0.146	0.092	0.055	0.027	0.027	_	-	-	0.146	0.055	0.027	0.027
Avg	0.628	0.451	0.157	0.119	0.048				0.579	0.139	0.091	0.048
					POST-REMOVA	L - Boda	ggressiv	•				
+2-664	0.141	0,111	0 030	0.007	0 022	0.007	-	-	0.119	0.022	0.007	0.015
48-685	0.312	0.286	0.026	0.017	0.009	-	-	-	0.225	0.025	0.017	0.009
+1-686	0.264	0.124	0 140	0.107	0 033	-	0.008	-	0.206	0.132	0.099	0.033
*1-682	0.199	0.087	0 113	0.095	0.017	-	800.0	0.017	0.173	0.087	0.069	0.017
+1-687	0 545	0 294	0 252	0 168	0.084	-	-	-	0.512	0 252	0.168	0.064
*# -688	0.364	0.035	0.329	0.234	0.095	-	-	0.009	0.355	0.321	0.225	0.095
Avg	0.304	0.156	 0.148	0.105	0.043				0.265	0.140	0.098	0.042
					FOST REMOV	AL - Age	ressive					
48-687	0 514	0 283	0 231	0 214	0 017	-	0 009	0 017	0 445	0 205	0 184	Ô 017
-8-679	0 521	0 200	0 212	0 205	0.017	-	0.007	0 044	0 306	0 161	0 154	0 007
	0 762	0.000	0 343	0.403	0.007	0 042	0.007	0.000	0.550	0.101	0 180	0.094
-10/3	0.735	0.402	0.376	0.240	0.034	0.070	J. UI/	·.····	0.001	0 107	0.163	0.034
#-65	800.V	V.418 A 997	V.4JI	0.13/	0.034	0 130		-	0.000	0.10/	0.103	0.000
	0 074	0.207	0.038	0.038	0.000	0.100 0 101	4.019	0.000 0.000	0.000	0.403	0.463	0.018
-#-0/4 *#-683	0.711	0.351	0.359	0.319	0.010	0.101	-	0.016	0.567	0.279	0.401	0.040
											*	
Avg	0.701	0.313	0.385	0,355	0.029				0.560	0.294	0.264	0.030

TABLE C-1. FACILITY 1 FRE- AND POST-REMOVAL SAMELING -- AMALYSED BY TEM

+ = Room A * = Room B R = Recount using original grid preparation

Sample	Structures/cc					Asbestos structures/cc			Fibers/cc			
<u>Ihmber</u>	Total	Monasbestos	Asbestos	Chrysotile	Amphibole	Matrix	Cluster	Bundle	Total	Asbestos	Chrysotile	Amphibole
					PRE-REHOVAL	- Nonei	gressive					
	0 070	0.016				_		A 416	0.054	A 430	0.030	0.000
78-20/	0.070	0.010	0.034	0.054	0.000	-	-	0.010	0.034	0.039	0.039	0.000
	0.030	0.462	0.135	0.002	0.093	-	-	0.018	0.022	0.140	0.047	0.083
TH-2/8	0.420	0.092	0.134	0.100	0.033	-	-	0.025	0.201	0.109	0.075	0.033
*#****	0.100	0.030	0.062	0.034	0.006	-	-	-	0.100	0.002	0.034	0.000
-8-203	0.05/	0.032	0.024	0.016	0,006	-	-	-	0.05/	0.024	0.010	0.000
-#-2/3	V.100	0.013	0.005	0.040	0.036			0.015	0.003	0.009	0.031	0.030
Avg	0.196	0.113	0.086	0.056	0.030	-	-	-	0.186	0.074	0.044	0.030
					PRE-REMOVA	L - Agg	ressive					
+1-253	0.152	0.093	0.059	0.017	0.042	-	•	-	0.152	0.059	0.017	0.042
+=-261	0.067	0.032	0.055	0.032	0.024	-	-	-	0.087	0.055	0.032	0.024
+=-275	0.181	0.134	0.047	0.016	0.032	-	-	-	0.181	0.047	0.016	0.032
*1-265	0.381	0.333	0.048	0.024	0.024	-	-	-	0.341	0.048	0.024	0.024
*1-269	0.321	0.185	0.135	0.068	0.068	-	-	-	0.287	0.127	0.068	0.059
*8-27 1	2.698	2.328	0.370	0.132	0.238	0.026	-	-	2.513	0.344	0.106	0.238
Ave	0.637	0.519	0.119	0.048	0.071				0.594	0.113	0.044	0.070
					POST-REMOVA	I Manu		-				
								•				
+#-792	1.511	0.676	0.635	0.272	0.363	-	0.030	0.015	1.421	0,589	0.227	0.363
+11-793	0.627	0.517	0.110	0.093	0.017	-	-	0.008	0.565	0.102	0.085	0.017
+11-675	0.634	0.317	0.317	0.183	0.133	0.008	-	0.017	0.600	0,292	0.167	0.125
*11-676	0.347	0.226	0.121	0.057	0.065	-	0.008	0.016	0.315	0.097	0.032	0.085
* H -680	0.331	0.121	0.210	0.186	0.024	-	-	0.024	0.291	0.170	0.153	0.016
+# -789	0.267	1.000	0.167	0.108	0.058	0.008	-	800.0	0.233	0.142	0.083	0.058
Avg	0.619	0,360	0.260	0.150	0.110	-	-	0.015	0.574	0.232	0.125	0.107
					POST-REMOV	AL - Agi	gressive					
+2-671	0.986	0.826	0.158	0.099	0.059	-	-	0.010	0.897	0.148	0,089	0.059
+#-795	0.848	0.562	0.286	0.276	0.010	0.039	-	-	0.700	0,227	0.227	0.000
+#-799	3.286	2.662	0.624	0.525	0.099	0.033	-	-	3.024	0.526	0.427	0.099
*H−796	2.402	2.113	0.264	0.216	0.048	0.048	-	-	1.705	0.168	0.120	0.048
*∏ -797	2.426	2.233	0.192	0.096	0,096	0.024	-	-	2,113	0.120	0.072	0.048
*1-8 00	0.627	0.454	0,173	0.173	0,000	0.050	-	-	0.519	0.115	0.115	0.000
Avg	1.762	1,475	0.283	0.231	0.052	-	-	-	1.493	0.217	0.175	0.042

+ = Room D = = Room E

Sample		St.	ructures/	çc		Asbestos structures/co			Fibers/cc			
<u>Fumber</u>	Total	<u>Honasbestos</u>	Asbestos	Chrysotile	Amphibole	Matrix	Cluster	Bundle	<u>Iotal</u>	Asbestos	Chrysotile	Anchibole
					IRE-REMO	VAL - Ag	gressive					
+#-307R	0,350	0.254	0.096	0.076	0.021	0.048	_	-	0.295	0.048	0.027	9.021
+#-316R	0,064	0.028	0.035	0.021	0.014	-	-	-	0.057	0.035	0.021	0.014
+#-320R	0.282	0.220	0.062	0.041	0.621	1.014	-	-	0.254	0.048	0.027	0.021
*#-306R	0.673	0.309	0.364	0.350	0.014	0.137	-	0.027	0.399	0.199	8,192	0.007
*11-309	0.588	0.385	0.203	0.181	0.822	0.087	-	0.007	0.486	0.109	0.094	0.015
•#-311R	0.055	0.014	0.041	0.041	8.000	-	-	-	0.055	0.041	0.041	0.000
Avg	0.335	0.202	0.133	0.118	0.015		 - 		0.258	0.080	0.067	0.013
					POST-REM	WAL - A	gressive	•				
+#-665R	0.215	0.072	0.143	0.131	0.012	-	-	0.006	0.209	0.137	0.125	0.012
+#-666R	0.089	0.044	0.044	0.033	0.011	0.011	-	-	0.077	0.033	0.022	0.011
+3-790R	0.477	0.364	0.113	0.087	0.024	0.036	-	0.006	0.393	0.072	0.048	9.024
*#-670 R	0.485	0.173	0.312	0.201	0.111	0.021	-	0.021	0.416	0.270	0.173	0.097
* 3 -679R	0.071	0.019	0.052	0.026	0.025	_	-	9.005	0.065	0.045	0.019	9.026
+# -7888	0.130	0,032	0.097	0.091	0.006	-	-	0.013	0.117	0.084	0.078	0,006
Avg	0.245	0.117	0.127	0.098	0.03				0.212	0.107	0.078	0.029
+ =	Room F	* = <u>R</u> ocm (3 R = 1	Recount usi	ng original	grid pe	eparatio	<u>n.</u>		· -		

TABLE C-3. FACILITY 3 FRE- AND FOST-REMOVAL SAMPLING -- ANALYSED BY THM

TABLE C-4. FACILITY & FRE- AND POST-REMOVAL SAMPLING -- ANALYSIS BY TEM

Sample		Stu	ructures/	cc		Asbestos structures/co			Fibers/cc			
<u>Humber</u>	Total	<u>Honasbestos</u>	Asbestos	Chrysotile	Amphibole	Matrix	<u>Cluster</u>	<u>Bundle</u>	<u>Iotal</u>	Asbestos	Chrysotile	Amphibole
					FRE-REMO	VAL - Ag	gressive					
+ 3 -807D	1.331	1.102	0.228	0.108	0.121	-	-	0.027	1.277	0.202	0.061	0.121
+#-808D	0.444	0.052	0.392	0.318	0.074	-	-	0.059	0.377	0.333	0.259	0.074
+#-809D	1.645	1.548	0.097	0.081	0.016	-	-	0.032	1.435	0.065	0.048	0.016
*#-801R	0.388	0.149	0.237	0.193	0.044	0.044	-	0.018	0.325	0.176	0.141	0.035
+1-802R	0.363	0.257	0.106	0.083	0.023	0.015	-	0.008	0.302	0.083	0.060	0,023
*#~806D	0.817	0.246	0.517	0.518	0.053	0.132	-	0.079	0.562	0.360	0.307	0.053
Ave	0.831	0.509	0.272	0.217	0.055			0.037	0.711	0.203	0.140	0.054
					POST-REM	WAL - As	gressive					
+#-9442	0.201	0.108	0.093	0.036	0.057	0.014	_	0.007	0.172	0.072	0.014	0.057
+5-947R	0.239	0.206	0.033	0.020	0.013	0.007	-	_	0.206	0.027	0.013	0.013
+8-9492	0.398	0.312	0.086	0.060	0.027	-	-	0.013	0.332	0.073	0.046	0.027
-W-917R	0.150	0.069	0.081	0.069	0.013	0.025	-	0.006	0.119	0.050	0.038	0.013
-9370	2.107	1.940	0.167	0.167	0.000	0.021	-	0.021	1.710	0.125	0.125	0.000
*#-940D	1.123	1.101	0.022	0.011	0.011	-	-	-	0.887	0.022	0.011	0.011
Avg	0.703	0.622	0.080	0,061	0.620				0.571	0.062	0.041	0.020

+ = Room H * = Room I R = Recount using original grid preparation.
D = Duplicate count from grid prepared from the same filter; original grid preparation not suitable for recounting.

TABLE C-5. MIXED CELLULOSE ESTER FILTERS FROM FACILITY 1 ANALYZED BY TEM

See	ple	Total Structures		Asber	tos Stru	ictur <u>es</u>	(s/cc)		_	Fon-Ash	est <u>os S</u> i	tructure	5 (5/c	ç)	Total Fibers
	ber	(\$/cc)	Total	Fibers	<u>Matrix</u>	<u>Cluster</u>	Bundle	Unknown	<u>Total</u>	Fibers	<u>Matrix</u>	<u>Cluster</u>	<u>Bundle</u>	<u>Unknown</u>	<u>(f/cc)</u>
					A. Con	centrat	ions Me	asured Du	ring Re	moval Op	eration	5			
*	3	6.854	1.828	0.718	1.044	-	-	0.065	5.026	3.394	1.110	-	-	0.522	4.112
AA	12	4.142	2.106	0.932	1.070	-	0.069	0.035	2.037	1.725	0.069	-	-	0.242	2.658
AA	14	3.359	1.838	0.887	0.729	-	0.032	0.190	1.521	1.425	0.032	+	0.032	0.032	2.313
AA	26	4.537	2.339	0.567	1.701	-	0.071	-	2.198	1.914	0.246	-	-	0.035	2.481
AA	27	4.251	2.589	0.657	1.778	-	0.155	-	1.662	1,391	0.193	-	-	0.077	2.048
AA	47	4,369	2.165	0.551	1.575	-	0.039	-	2.204	2.008	0.116	-	0.039	0.039	2.559
AA	122	6.547	2.896	1.322	1.196	0.189	-	0.189	3.651	3.211	0.252	-	-	0.189	4.533
AA	125	5.666	4.040	1.889	1.889	0.052	0.105	0.105	1.626	1.416	0.105	-	-	0.105	3.305
AA	138	5.084	2.871	1.224	1.600	-	0.047	-	2.212	2.118	0.094	-	-	-	3.342
AA	142	4.915	3.601	1.022	2.482	-	0.049	0.049	1.314	1.022	0.915	-	0.049	0.049	2.044
AA	157	3.752	1.914	0.563	1.351	-	-	-	1.839	1.538	0.263	-	-	0.038	2.101
AA	158	3,783	2.270	1.211	1.021	-	-	0.038	1.513	1.248	0.151	-	-	0.113	2.459
Â	8	4.772	2.538	0,962	1.453	-	-	-	2.234	1,868	0.236	-	-	-	2.830

B. Concentrations Measured During Preparation Operations

.

AA 44	0.014	0.014	0.014	-	-	-	-	-	-	-	-	-	-	0.014
AA 45	0.000	0.000	D.000	-	-	-	-	-	-	-	-	-	-	0.000
AA 91	1.272	0.054	0.013	0.040	-	-	-	1.216	1.125	-	-	0.094	-	1.138
AA 111	0.374	0.249	0.180	0.055	-	-	0.014	0.125	0.111	0.014	-	-	-	0.291
Ave	0.415	0.079	0.052	-	-	-	-	-	-	-	-	-	-	0.361

APPENDIX D

STATISTICAL ANALYSIS

.

APPENDIX D

STATISTICAL ANALYSIS

Goals of Analysis

Do asbestos levels increase because of the removal operations? We study this question by making a variety of comparisons:

- a.) comparison of the pre- and post-removal nonaggressive structure and fiber counts.
- b.) comparison of the pre- and post-removal aggressive structure and fiber counts.

These first two sets of comparisons are meant to answer the question directly -- is there more asbestos in the given room after removal than there was before removal?

Other comparisons that answer related questions are the following:

- c.) comparison of the fraction of fibers that are asbestos, pre- vs. post-removal.
- d.) comparison of the faction of structures that are asbestos, pre-vs. post-removal.

The two above comparisons, which could each be made for the aggressive and nonaggressive data separately, could give information on the nature of the removal process.

Other comparisons are as follows:

- e.) comparison of the pre-aggressive and pre-nonaggressive data.
- f.) comparison of the post-aggressive and post-nonaggressive data.

The above comparisons provide information on the value of the aggressive and nonaggressive data.

Remarks on Statistical Analysis

The comparisons (a), (b), (e), and (f) were carried out on the (natural) log scale, where the residuals seem to behave nicely. There is little indication of outliers. Since several samples were taken simultaneously, the residual mean square from each analysis of variance reflects the sampling and counting variability associated with the TEM method. The estimated relative standard deviation associated with this variability was no bigger than 80%, and as low as 60%. (The comparisons for (c) and (d) were carried out on the untransformed scale.)

Aggressive Sampling -- Changes in Fiber Counts Due to Removal

We begin by discussing comparisons (a) and (b). For the aggressive measurements, the differences among rooms within a facility are not significant at the 5% level. We must consider the asbestos measurements separately for the total (fiber and structure) measurements. See the table below for the ratios

of post/pre measurements, for aggressive sampling.) In the first two facilities, the post removal measurements on asbestos fibers and structures are higher than the corresponding pre-removal figures by over 100% (ratio 2.69 and 2.23 from table below). This is not true in the Facilities 3 and 4. In Facility 3, there appears to be no statistically significant difference between the pre- and post-removal figures. In Facility 4, the post-removal asbestos measurements are lower -- by about 70% (ratios 0.293 and 0.308). It is not clear whether these differences have to do with the state of the asbestos or with the effectiveness of the glove control methods. Although one might expect that the figures on total structures and fibers would yield results similar to those for asbestos, there are some differences. Only for Facility 2 are the post-aggressive figures higher than the pre-removal figure -- by almost 400% (ratio = 4.831). This could indicate some differences in the material being removed from the various sites. One might presume that the change in asbestos material present after removal would be similar to the change in all material -- since the asbestos is presumably mixed in with other fibrous material. This, however, is not true for Facilities 1 and 4, the first and the last. Indeed, it is not true for Facility 2, either. Below is the table presenting post/pre ratios from the fitted models for total and asbestos fibers and structures, from the aggressive sampling:

	Fitted	Fitted Values (Post/Pre) Aggressive Sampling												
Facility	Struc/Tot	Struc/Asb	Ratio	Fiber/Tot	Fiber/Asb	Ratio								
1	1	2.69	2.69	1	2.23	2.23								
2	4.831	2.69	0.557	4.267	2.23	0.523								
3	1	1	1	1	1	1								
4	1	0.293	0.293	1	0.308	0.308								

For three facilities, there is no statistically significant difference between post- and pre-removal totals (of structures or fibers). However, the corresponding ratios for asbestos take on all three possible trends: increase (Facility 1), stay the same (Facility 3), or decrease (Facility 4). This suggests that any kind of change is possible, and makes it difficult to assign reasons for such change.

Nonaggressive Data -- Changes in Fiber Counts Due to Removal

For the nonaggressive data, Room A in Facility 1 is peculiar. For that room alone, there is no statistically significant difference between the pre- and post-removal data. For all other rooms (in Facilities 1 and 2), the post data are higher -- on average, by between 200% and 300%. We note that the nonaggressive measurements by TEM were not made in Rooms 3 and 4.

These observations can also be made by studying a table analogous to the one constructed above. Here we distinguish between Room A and the other rooms, in agreement with the statistical results discussed above.

Fitted Values (Post/Pre) -- Nonaggressive Sampling

Room	Struc/Tot	Struc/Asb	Ratio	Fiber/Tot	Fiber/Asb	Ratio
A	1.02	0.567	0.556	0.850	0.545	0.641
non-A	4.137	3.093	0.748	4.491	3.357	0.747

We recall that nonaggressive data are available only for Facilities 1 and 2. Thus, the non-A rooms above include both rooms from Facility 2 and one room from Facility 1. The fitted values for the non-A rooms agree fairly well with the aggressive sampling ratios for Facility 2 given in the previous table. The nonaggressive sampling ratios for Room A differ somewhat from the aggressive sampling ratios for Facility 1 from the previous table -- especially in the ratios for asbestos structures and asbestos fibers. The reason why these ratios should indicate an increase in asbestos (ratios 2.69 and 2.23) for the aggressive sampling and a decrease (ratios 0.567 and 0.545) for nonaggressive sampling are unclear.

How Much Higher Are Aggressive Than Nonaggressive Counts?

Rather than just compare the ratios, it might make some sense, as is stated in (e) and (f) at the beginning of these remarks, to compare the actual nonaggressive measurements with the corresponding aggressive measurements. Again, recall that such comparisons are limited to the first two facilities. For the pre-removal data, Room D has different results than the three other rooms, when the aggressive and nonaggressive data are compared. For all four measures, the Room D data yield results for the aggressive measurements that are lower than the nonaggressive -- on average between 30 and 50% lower. For the three other rooms, the aggressive results are over 100% higher. The reason for this discrepancy is not clear.

For the post-removal data, Facility 2 (which includes Room D) shows no statistically significant difference between the aggressive and nonaggressive measurements, for either asbestos fibers or structures. Facility 1 data indicates that the aggressive measurements for asbestos fibers and structures are about 150% higher than the nonaggressive. For the total structures and fibers, the facilities are consistent, and both total structures and fibers are about 250% higher when aggressive sampling is used.

Summary

In summary, a main question here is the effectiveness of glove bags in containing asbestos material during the removal process, the conclusion that the first two facilities shows signs of additional asbestos after removal, whereas the fourth facility show signs of decrease in such material allows the possibility that the removal crew did improve its removal techniques, so that the glove bag methods used in the fourth facility were more effective in containing the asbestos material. (Note that the analysis of PCM data in Table 5-7, comparing pre- and post-removal counts, led to a similar conclusion concerning the decrease in asbestos after removal.)

U.S. GOVERNMENT PRINTING OFFICE: 1991 549-437

-